UNIVERSITE DE KISANGANI FACULTE DES SCIENCES

Département d'Ecologie et Gestion des Ressources Animales

ETUDE COMPARATIVE DES LEPIDOPTERES RHOPALOCERES DU JARDIN ZOOLOGIQUE DE KISANGANI ET DU JARDIN BOTANIQUE DE LA FACULTE DES SCIENCES (EN R.D. CONGO)

Par

Alain ALEKO AKOBUNE

MEMOIRE

Présente en vue de l'obtention de Grade de licence en Science.

Option : Biologie Orientation : Zoologie Directeur : Pr. DUDU, A. Encadreur : Cons. WETSI, L.

ANNEE ACADEMIQUE: 2007-2008.

REMERCIEMENT

Comme la philosophie Bantoue, nous oblige après chaque travail ou œuvre, nous puissions passer par l'acte de reconnaissance et de remerciement.

Ce mémoire de fin d'étude Universitaire est le fruit d'un encadrement et de soutien de plusieurs personnes depuis l'école primaire jusqu'à l'Université.

Nos remerciements à l'Eternel Tout puissant celui qui nous a fait, et nous lui appartenons, car l'Eternel est bon, et sa bonté dure toujours. Sa fidélité de génération en génération.

Nos remerciements s'adressent à toute la cellule des enseignants de la Faculté des Sciences de l'Université de Kisangani. Aux Professeurs : DUDU AKAIBE, UPOKI AGENONGA, JUAKALY MBUMBA et aux Chefs des travaux : MULOTWA, GEMBU, AGBEMA, BAPEAMONI, MUKINZI, etc.

Nous pensons très particulière au Conservateur WETSI qui, avec rigueur a bien voulu assurer ce travail.

Nous avons une obligation et le devoir d'exprimer notre reconnaissance aux membres de famille. Ainsi nous situerons la famille BODEGA et AKOBUNE. Nous remercions plus particulièrement le pauvre Papa MALI Jean BODEGA et le papa AKOBUNE Alphonse pour toutes ses contributions qui nous ont fournies durant tout ce parcours de calvaire.

Nous ne manquerons pas de remercier nos frères et sœurs : Prof BODEGA, ABDALLAH BODEGA, Henriette INYANDEYI, Sonia ZABIBU, Emylliane BODEGA, Joël AKOBUNE, MIGNON ANDIMA, Jules AKOBUNE, Bijoux INYANDEYI, Lydie BONDOANE, MALI BODEGA, LAVINIA AKANASO,

PAPY AKOBUNE, ... à maman Guyllène, maman Anne Marie, IDEY, et à ma tante Julienne ANDUBUSO.

Nous voudrions exprimer notre respectueuse reconnaissance à tous les compagnons de lutte avec qui nous avons partagé des moments d'exaltation comme de peine, il s'agit de Robert ABANI, Gaby BADJEDJEA, ADJA AKILIMALI, KAMBALE VUMA, KAKULE MUHINDO, Samy KAGENI, Pascal BAELO, Jérôme LOLA Franck MASUDI, Prescott MUSABA, AMULA, KOSELE KADA, et Albert LOTANA.

Il nous sera ingrat de fermer cette page sans que nous nous souvenons de notre amie Louise NDAA, qui quelque soient les multiples difficultés de la vie estudiantine elle ne nous a pas abandonné.

Résumé

Ce travail est intitulé l'étude comparative des Lépidoptères Rhopalocères du Jardin Zoologique de Kisangani et du Jardin Botanique de la Faculté des Sciences de l' Université de Kisangani. La capture a été fait à l'aide du piège à Charaxes.

Du point de vue systématique, nous avons capturés 607 spécimens des Lépidoptères Rhopalocères appartenant à 52 espèces, 19 genres et 4 familles.

Au Jardin Zoologique de Kisangani, nous avons travaillé en Jachère et à forêt secondaire. Compte tenu des spécimens capturés dans les 2 sites qui étaient récoltés en jachère et en forêt secondaire, réparties à 4 familles, 52 genres.

Dans le Jardin Botanique de la Faculté des Sciences de l'Université de Kisangani, nous avons récolté 7 spécimens des papillons du jour appartenant à 3 espèces, 2 genres et 2 familles.

Summary

This work is a comparative study of butterflies of Zoological garden of Kisangani and Botanic Garden of the Faculty of Sciences of University of Kisangani (Democratic Republic of Congo). We used Charaxes Traps to capture butterflies specimens.

About species biodiversity, we get in total 607 Specimens; 52 species dived in 4 families and 19 genera in the Zoological Garden.

In Zoological Garden, we surveyed both: Follows and secondary forest. According to the number of specimens captured, the fallows and the secondary forest, we collect 600 specimens butterflies dived 4 families, 19 genera, 52 species.

In the Botanic garden of the Faculty of sciences of University of Kisangani which is a secondary forest, we collect 7 butterflies specimens dived 2 families, 2genera and 3 species.

TABLE DES MATIERES

	7
O. INTRODUCTION	
O. I. PROBLEMENTIQUE	1
0.2. Hypothèses	
0.3. Généralités	
0.3.1. Définition	3
0.3.2. Cycle de vie	4
0.3.3. Nourriture des papillons	5
0.4. But	6
0.5. L'intérêt	6
0.6. Etudes Antérieurs	7
CHAP.I.: MILIEUX D' ETUDES	9
1.1. Région de Kisangani	9
1.1.1. Situation géographique et administrative de la ville de Kisangani	9
1.2. Description de sites de prélèvement	10
1.2.1. Jardin Zoologique de Kisangani	10
1.2.2. Jardin Botanique de la Faculté de Sciences de UNIKIS	12
CHAP.II: MATERIEL ET METHODES	15
2.1. Matériel	15
2.2. Méthodes	15
2.2.1. Description de piège à Charaxes	15
2.2.2. Prélèvement des échantillons	16
2.3. Traitement des données au Musée de la Faculté des Sciences	16
2.4. Analyse de données	17
CHAP.III.RESULTATS	19
3.1.Résultats obtenus sont présentés sous formes des tableaux sur les pa	iges
suivantes :	19
3.2.Distribution des échantillons des trois biotopes exploités dans les deux	
sites de recherche.	22
3.3.Comparaison de l'indice de la biodiversité de SHANNON-WEINER (H) et	
d'Equitabilité(E) dans les biotopes classés.	26
CHAP.IV. DISCUSSIONS	27
CONCLUSION ET SUGGETIONS	32
REFERENCES BIBLIOGRAPHIQUES	34

0. 1. PROBLEMENTIQUE

Les forêts pluviales d'Afrique centrale et occidentale avec leur multitude d'espèces animales et végétales, constituent l'un des grands trésors biologiques du monde, et représentent l'un des biens les plus précieux de nombreux pays d'Afrique équatoriale. Les forêts pluviales sont précieuses car elles remplissent de nombreuses fonctions vitales pour l'homme. Elles fournissent de la nourriture, fruits, noix et viande, pour la population qui vit à proximité. Elles fournissent des matériaux de construction et des produits médicinaux utilisés localement, ainsi que du bois pour l'exploitation.

Une forêt intacte stabilise le sol et réduit l'érosion, et produit donc de l'eau potable. Elle joue également un rôle clé dans la régulation du climat, à l'échelle locale comme à l'échelle globale. La beauté, la diversité et la rareté des espèces vivant dans ces forêts attirent touristes et scientifiques du monde entier, et sont à l'origine des traditions culturelles uniques des peuples du bloc forestier africain (WHITE et EDWARDS, 2000).

Parmi les insectes qui frappent les visiteurs de forêts tropicales du moins ceux qui savent utiliser leurs yeux viennent en premier lieu les papillons. L'intérêt de ces insectes aux couleurs souvent chatoyantes, qui font rêver bien des collectionneurs, dépasse largement les aspects purement esthétiques. Les adultes de certaines espèces sont d'importants pollinisateurs et les chenilles représentent les principaux herbivores de la forêt. Les papillons constituent donc un élément primordial des écosystèmes forestiers (VANDE, 2004)

Ainsi, pour bien étudier les papillons il nous faut évaluer leur niche écologique. De nombreuses espèces de papillons sont attachées à la nourriture d'une seule espèce végétale. En raison de cette contrainte, la répartition de ces papillons est liée à celle de leur plante hôte. Leur habitat dépend de la présence de la plante hôte indispensable aux chenilles et

d'autres paramètres comme l'altitude, la température, l'ensoleillement ou l'ombre. Ces insectes sont rarement attirés par des arbres ou des arbustes comme ceux des villes (http://www.les insectes duquebec.com)

Pour cette raison, ce travail qui est intitulé l'étude comparative des Lépidoptères Rhopalocères du Jardin Zoologique et du Jardin Botanique de la Faculté de Sciences de l'Université de Kisangani. Dans la mesure du possible, nous aurons comme problèmes ci après :

- Peut-on avoir une différence entre la faune des Lépidoptères Rhopalocères du Jardin Zoologique de Kisangani et du Jardin Botanique de la Faculté des Sciences ?
- Y a t il une différence entre le Jardin Zoologique et Botanique par rapport aux autres Réserves Forestières de la ville de Kisangani en espèce des Lépidoptères Rhopalocères ?

0.2. Hypothèses

Nos questions posées ci-dessus auront comme hypothèses ci – après :

- *Nous supposons que nous trouverons qu'une différence entre le Jardin Zoologique de Kisangani et le Jardin Botanique de la Faculté de Sciences de l'Université de Kisangani à faune de Lépidoptères Rhopalocères.
- *Dans ces deux sites et les autres Réserves Forestières de la ville de Kisangani, il existerait une divergence sur le plan faunistique de Lépidoptères Rhopalocères.

0.3. Généralités

Les papillons ont évolué jusqu'à leur forme actuelle depuis le crétacé (il y a 65 à 135 millions d'années). Ils forment l'ordre des Lépidoptères en quatre sous – ordre : Les Macrolépidoptères (papillons de jour et grand papillons de nuit) et les Microlépidoptères (petits papillons nocturnes de

nuit) et les papillons diurnes (Rhopalocères) et les papillons nocturnes (http://www.tourrette-levens.org).

Les Lépidoptères appartiennent à la classe des Insectes, l'embranchement des Arthropodes, le Règne Animal. Les Lépidoptères sont des insectes holométaboles, c'est –à –dire, dont la morphologie diffère profondément de celle de leurs larves et qui passe par le stade nymphal. (BOURGOGNE, 1979)

0.3.1. Définition

L'ordre des Lépidoptères (Lepidos = écaille, pteres= ailes, soit : ailes écailleuses) qui sont des insectes de taille variable, appelés communément papillons, portant généralement 2 paires d'ailes membraneuses recouvertes d'écailles. Les pièces buccales forment généralement une trompe qui s'enroule sous la tête au repos et qui permet d'aspirer le nectar des fleurs. Les larves, appelées chenilles, ont des mâchoires de types broyeurs et se nourrissent de végétaux. La vie d'un papillon est une succession de 4 stades : œuf, chenille, nymphe (=Chrysalide) et adulte. Ce dernier pouvant durer de quelques jours à plusieurs mois (http:// www.tourrette-levens.org).

Ainsi dans le monde, il existe deux groupes de papillons :

- Papillons diurnes (Lépidoptères Rhopalocères) ce sont les groupes des papillons qui vivent le jour. Leurs couleurs sont généralement vives, leurs antennes terminées en massue et leurs ailes sont disposées verticalement au dessus du corps lorsque l'animal est au repos. Leurs ailes postérieures sont élargies à la base et nettement recouvertes par les antérieures, permettant de synchroniser leurs mouvements durant le vol.
- Papillons nocturnes (Lépidoptères Hétérocères) ce sont les papillons qui volent pendant la nuit. Leurs couleurs sont généralement ternes, mais certains sont tout aussi colorés que les Rhopalocères. Leurs antennes

• sont filiformes ou pectinées (plumeuses) et leur couplage alaire est caractéristique.

En effet, il est constitué d'une ou plusieurs soies portées par la base de l'aile postérieure, qui s'insèrent dans un lobe situé sur le bord basal de l'aile antérieure. Les Hétérocères représentent plus de 80 % des espèces et sont plus primitifs que les Rhopalocères. (http://www.tourrette-levens.org)

0.3.2. Cycle de vie

La vie d'un papillon est composée de 4 grandes étapes qui présentent succession des métamorphoses (http://users.skynet.be/les.papillons)

1. Œuf:

Après la fécondation, la femelle pond ses œufs dans un endroit approprié. Le nombre d'œufs peut varier entre 25 et 10.000 unités. La taille est généralement comprise entre 0,5 mm et 3mm. Les œufs sont de formes globulaires, par fois aplaties à une extrémité, allongés ou étirés. Certains œufs sont pondus un par un, d'autres espèces pondent une ou plusieurs couches ou les arrangent en ligne ou en tas. La durée d'incubation est très variable : elle dépend non seulement de l'espèce considérée, mais aussi de la température et de l'humidité atmosphérique. Chez certains papillons tropicaux, l'éclosion a lieu dès le 3° jour après la ponte, alors que dans les régions plus froides les œufs doivent passer l'hiver avant d'arriver à maturité.

2. Chenille

Le second stade de vie des papillons est le stade larvaire. La larve du papillon, la chenille (eruca), présente un corps à peu près cylindrique, protégé par une cuticule molle et souple. La surface du corps est couverte de poils plus ou moins denses. Au cours de sa croissance, la

chenille effectue un certain nombre de mues au cours desquelles son aspect antérieur et sa couleur varient souvent, le nombre de mues est variable : quatre, cinq ou plus selon le cas particulier de chaque espèces.

3. Chrysalide

C'est l'etape au cours de laquelle s'effectue l'ultime transformation et ce stade est appelé également la nymphe. Dans cet état, le papillon ne prend aucune nourriture, n'effectue plus de mues, mais se maintient dans un état tranquille. Seules des nymphes de quelques espèces réagissent lorsqu'on les touchent par des mouvements abdominaux.

4. Imago (papillon adulte)

Lors de l'éclosion, le papillon commence par percer la fine enveloppe qui recouvre sa tête; il aspire ensuite par son orifice buccal (sa bouche) de l'air pour remplir une partie se son tube digestif. En même temps il extrait progressivement de leur enveloppe les pattes, les antennes et la trompe. Puis il prend appui sur ses pattes pour tirer à leur tour les ailes de leur coquille.

0.3.3. Nourriture des papillons

La plupart des papillons adultes se nourrissent de nectar de fleurs. Les diurnes se posent habituellement directement sur la fleur ou se suspendent pour se nourrir de nectar. Certains apprécient la sève coulant des arbres blessés dont ils se régalent. D'autres préféreront les excréments des grands mammifères, les cadavres en décomposition ou sur les végétaux pourrissants. Les papillons ont également besoin d'eau pure. Ils affectionnent les lieux humides, boueux où on les voit se désaltérer (http://Users.Skynnet.be)

0.4. But

Le but principal des ce travail est d'évalué la biodiversité de Lépidoptères Rhopalocères dans le Jardin Zoologique de Kisangani et du Jardin Botanique de la Faculté des Sciences et de comparer avec les autres Réserves Forestières explorées dans la ville de Kisangani.

0.5. Intérêt

L'intérêt de ce travail est sur le plan scientifique, il aidera les futurs chercheurs comme un point de référence et la collection des papillons élaborée servira aux étudiants comme matériel didactique de référence.

Autres intérêts, les Lépidoptères Rhopalocères jouent un grand rôle dans la vie sociale et économique humaines et sont en relation avec les autres animaux (KAPIAMBA, 1980).

Ils contribueront sur le plan économique, au niveau de leurs chenilles des papillons comestibles sont utilisées dans l'alimentation en fournissant des protéines animales pour la population humaines. Ils joueront aussi les rôles esthétiques pour l'ornementation des habits, des aquariums, de logo sur les pagnes, les tricots,...

Désavantages

Le méfait le plus connu provient de leurs larves car elles ravagent les champs, nous citerons par exemple la famille de Pieridae qui comprend plusieurs espèces nuisibles et redoutables pour agriculture.

0.6. Etudes Antérieurs

En Afrique, plusieurs chercheurs ont déjà fait leurs recherches sur la faune de Lépidoptères Rhopalocères. Nous citerons quelques travaux effectués: DALL'ASTA et FERMON (1996) ont travaillé sur les papillons (Lepidoptera Rhopalocera) entant qu'indicateurs écologiques pour la forêt classée de Bossematié (Est de la côté d'Ivoire); DALL'ASTA et al (1994) ont évalué l'emploi de papillons du jour, insectes: Rhopalocera et Grypocera comme "Espèces indicatrices "dans le projet de la réhabilitation des forêts dans l'Est de la côte d'Ivoire.

En République Démocratique du Congo, plusieurs recherches ont été effectuées sur les Lépidoptères Rhopalocères. Nous indiquerons quelques travaux :

Dans le cadre des missions d'exploration des institutions des parcs Nationaux du Congo, BERGER (1940), BEBAUCHE (1942) et OVERLAET (1956). Ainsi la synthèse des connaissances sur les papillons de la (RD. Congo) est connue par BERGER (1981).

A Kisangani et ses environs l'étude des Lépidoptères Rhopalocères et des Lépidoptères Hétérocères a déjà fait l'objet de quelques travaux sur le plan systématique et l'étude des chenilles comestibles.

Nous en retenons quelques exemples des Lépidoptères Rhopalocères: KAPIAMBA (1980) a travaillé sur l'inventaire systématique de Lépidoptères Rhopalocères de l'île Kongolo, KANKONDA et WETSI (1992) ont fait leurs recherches sur les chenilles comestibles de Kisangani et ses environs; MASOZERA (1994) a travaillé sur l'inventaire systématique de Lépidoptères Rhopalocères de MASAKO; ALEKO (2006) a élaboré une contribution à l'étude des papillons du jour (Lepidoptera Rhopalocera) dans la Réserve Forestières de Masako; BADJEDJEA (2006) a fait une contribution à l'étude de la biodiversité des Lépidoptères Rhopalocères de la Réserve Forestières de Masako; ASUMANI (2007) a étudié la biodiversité des papillons du jour dans la Réserve Forestières de la Yoko.

Autres travaux ont été effectué pour l'étude des chenilles comestibles : KANKONDA (1984) a évalué les développements des quelques Lépidoptères dans le cas d'intérêt économique. OKANGOLA (2007) a réalisé une contribution à l'étude biologique et écologique des chenilles comestibles de la région Kisangani cas de la Réserve de la Yoko, LISINGO (2005) a fait l'étude des chenilles comestibles et de leurs plantes hôtes à Kisangani et ses environs ; LISINGO (2007) a étudié les chenilles comestibles et autres usages de leurs plantes hôtes dans les districts de Kisangani.

CHAP.I.: MILIEUX D'ETUDES

1.1. Ville de Kisangani

1.1.1. Situation géographique et administrative de la ville de Kisangani

La ville de Kisangani est située dans la partie Nord Orientale de la cuvette centrale Congolaise avec comme coordonnées géographiques 0°31' de latitude Nord et 25°11' de longitude Est. De par ses coordonnées géographiques, Kisangani se trouve à cheval sur l'équateur sa partie altimétrique moyenne est de 396 m et varie de 376 m à 450 m (plateau arabisé au Sud-Est et plateau médical à l'Ouest) jusqu'à 460m (plateau Boyoma au Nord-est), la superficie totale couverte par cette ville est de 1910 km² (NYAKABWA, 1982). D'après le rapport de l'institut National de la statistique 1990.

Selon BOLA (2002) administrativement, elle se subdivise en six communes : LUBUNGA (852 km²), TSHOPO (489 km²), MANGOBO (18 km²), KABONDO (449 km²), KISANGANI (276 km²) et MAKISO (25 km²).

• Climat

La ville de Kisangani est sous l'influence du climat équatorial, chaud et humide, du type AF selon la classification de KOPPEN. Il correspond à la forêt ombrophile équatoriale, à pluviométrie régulière et abondante, (1750 mm par an en moyenne) mais variable dans le temps et dans l'espace (1500 et 2000mm) les fluctuations thermiques sont également importantes dans cette région de Kisangani, entre 20° à 30°C (moyenne de 25°C) l'humidité relative moyenne mensuelle est de 84% (BOYEMBA, 2006).

1.2. Description des sites de prélèvement

Au cours de nos récoltés nous avons travaillé sur les deux sites qui suivent : le Jardin Zoologique de Kisangani et le Jardin Botanique de la Faculté des Sciences de l'Université de Kisangani.

1.2.1. Jardin Zoologique de Kisangani

Le Jardin Zoologique de Kisangani est situé à la rive droite de la rivière Tshopo sur l'axe routier Kisangani Buta, à quatre kilomètres de la ville Kisangani, côté nord. Sa superficie est de 84 hectares (KADANGE, 1996).

Il s'étend en amont et en aval du pont qui relie les deux rives de la rivière Tshopo, et se situe entre le Beach UNIBRA, à la centrale hydroélectrique et à l'usine de la REGIDESO de Kisangani.

Le Jardin Zoologique de Kisangani a été crée le 21 juin 1951 et servait de station de quarantaine des animaux capturés à l'intérieur de la région et qui devaient être expédiés vers les métropoles ou dans d'autres jardins du pays.

Depuis mai 1978, la gestion de tous les Jardins Zoologiques et Botaniques est assurée par l'Institut des Jardins Zoologiques et Botaniques du Congo suite à l'ordonnance présidentielle N° 78-2150 du 05 mai 1978 (KABANGI, 1986 in KADANGE, 1996). La carte est reprisé dans l'annexe I, figure 1.

La végétation de la concession du Jardin Zoologique de Kisangani est l'exemple typique d'une forêt artificielle à *Terminalia superba*. (*Combretaceae*). Actuellement, sous les influences anthropiques la forêt artificielle du Jardin Zoologique de Kisangani à *Terminalia superba* est

subdivisée à deux biotopes : la forêt à *Terminalia superba* qui est classée comme la forêt secondaire et les périphériques de la forêt à *Terminalia superba* sont formées des Jachères herbacées dominées par *Panicum maximum* et les autres espaces formés de champs de manioc.

11

• Forêt à Terminalia superba

Elle est divisée en deux strates bien distinctes :

- Strate arborescente: en plus de Terminalia superba Engl. & Diel on peut observer également la présence de Musanga cercropioïdes R.Br. (Combretaceae), Pycnanthus angolensis (Welw.) excelle (Myristaceae), Myriathus arboreus P.Beauv. (Moraceae), Milletia laurentii DeWild. (Fabaceae), etc.
- Strate arbustive et herbeuse: dominée principalement par les arbustes tels que Rauvolfia vomitoria Afzel. (Apocynaceae) Alchornea cordifolia (Schum. & Thonn) Mull. Arg (Euphorbiaceae) et des herbes comme Costus lucanosianus (j.Braun) (Zingiberaceae), Afromomum lauretii (DeWild et Th.Dur.) (Zingiberaceae), Panicum maximum Jacq. (Poaceae) Panicum repens L. (Poaceae), Trachyphrimium brauniamum (K.Schum) (Marantaceae) qui domine etc. KADANGE (1996).

Jachère herbacée

Elle est dominée par *Panicum maximum* qui se concentre dans tous les espaces vides exploités par l'agriculture, *Panicum repens* L, *Paspalum notatum* Fluegge, *Harungana madagascariensis* Lam.ex Poir, *Afromomum laurentii* (De Wild. & TH.Dur.), *Costus lucanusianus* (j.Braun), etc.

Liste des pensionnaires du Jardin Zoologique

Espèces en détention du Jardin Zoologique de Kisangani

- Papio anubis (Cercopithecidae)
- Pan troglotites (Hominidae)
- Asinus africanus (Equidae)

Espèces vivant en liberté

- Cercopithecus ascanius (Cercopithecidae)
- Cercopithecus l'hoesti (Cercopithecidae)

1.2.2. Jardin Botanique de la Faculté de Sciences de UNIKIS

- Historique du jardin

C'est en 1975 que le Professeur LISOWSKI a eu l'idée d'implanter le Jardin Botanique au sein de la Faculté des Sciences. Le but poursuivi par ce dernier était de doter la faculté d'un matériel didactique de référence au service des chercheurs, des enseignants et des étudiants. Le professeur LISOWSKI et son équipe ont entretenu le terrain pour y planter les espèces issues de différents biotopes. Les plantules et les boutures à introduire dans le Jardin provenaient de différents milieux écologiques et des différentes zones de la ville.

Dans un premier temps, il n'y avait eu qu'une vingtaine de parcelles qui avaient été installées. Par la suite, le travail s'est poursuivi et le nombre de parcelles à considérablement, augmenter, certaines espèces seraient introduites des contrées lointaines BUKAVU, GOMA, BUNIA etc.

Le Jardin est composé de 7 rangées (A, B,...G) et de 11 lignes (1,2,...11), il comprend donc au total 77 parcelles. Il s'étend sur une longueur de 107m dans la direction Est – Ouest et une larguer de 61m dans la direction Nord – Sud, soit une superficie totale de 6.527m². (KASEREKA, 1996). Sa structure est signalée dans l'annexe I, figure (2).

Situation géographique

Le Jardin qui constitue notre milieu d'étude est situé dans l'enceinte de la Faculté de Sciences, dans la partie Sud – Est, dans la ville de Kisangani qui est située près de l'Equateur, à 25°11' longitude Est et 0'11" latitude Nord (NYAKABWA, 1982).

Végétation

Le Jardin Botanique compte actuellement 292 espèces végétales réparties en 238 genres et 76 familles. Les Angiospermes regroupent le nombre le plus élevé d'espèces (281) soit 95,5%, parmi lesquelles les Dicotylédones sont majoritaires avec 234 espèces réparties en 187 genres et 56 familles. Les familles représentées sont celles des Fabaceae (20especes), Euphorbiaceae (17 espèces), Caesalpiniaceae (13 espèces), et Mimosaceae (12 espèces). Par contre, les Monocotylédones sont représentées par 47 espèces regroupées dans 41 genres et 13 familles avec la dominance de la famille Araceae (9 espèces) et Marantaceae (4 espèces).

Les Ptéridophytes comptent 8 genres groupés dans 5 familles. Les familles les plus représentatives sont celles des Polypodiaceae et des Nephrolepidaceae respectivement avec 3 et 2 espèces.

Les Gymnospermes ne sont représentés que par deux familles, celles des Cycadaceae et Zamiaceae comptant respectivement un genre et une espèce.

Les espèces les plus fréquentes et les mieux répandues sont les suivantes : *Tricalysia bequaerti, Leptomychia tokana, Trachyphrynium brauniamum, Milletia laurentii, Canthium vulgare, Albizzia chinensis, Bridelia atroviridis, Asystasia gangetica, Pycnanthus angolensis, Zebrina*

pendula,...Cette dominance spécifique peut probablement être liée au mode de dissémination et à la vitalité des espèces (UDAR et al, 2003).

- Section animale

Actuellement le Jardin Botanique à une grande diversité de faune : mammalienne, entomologique, ornithologique ou nous pouvons donner quelques exemples comme : Cercopithecus l'hoesti, Halcyon senegalensis, Corvus albus, etc.

CHAP.II: MATERIEL ET METHODES

2.1. Matériel

Notre matériel est constitué de 607 spécimens de Lépidoptères Rhopalocères capturés pendant neuf mois à l'aide des pièges à Charaxes (pièges à banane), c'est-à-dire à partir de mois de février jusqu'au mois d'octobre 2008. Au niveau du Jardin Zoologique de Kisangani, nous avons obtenu 600 spécimens et au Jardin Botanique de la Faculté des Sciences de l'Université de Kisangani, où nous avons capturé 7 spécimens. Parmi les 607 spécimens, 568 ont été identifiés et 9 autres spécimens ne l'ont pas été. Les évolutions mensuelles des captures sont signalées dans l'annexe III.

2.2. Méthodes

Nos captures ont été réalisées à l'aide de 9 pièges à Charaxes.La méthode constituait en une installation des pièges dans un même endroit de récolte, pour bien évaluer les espèces qui fréquentaient cette région.

2.2.1. Description de piège à Charaxes

Le piège à Charaxes, se compose de filet cylindrique à la base du quel est fixée une planche par des cordes attachées à son bord supérieur. Il y a un espace de 3 à 5 cm entre les bas du filet et la planche, au milieu du quel, se trouve un petit récipient contenant de la banane fermentée. Les papillons, attirés par la banane, entrent par espace situé entre la planche et le filet blanc et sucent l'appât. Une fois rassasie, ils s'envolent vers le haut et restent prisonniers. (DALL'ASRA et FERMON, 1996) La structure du piège à Charaxes est signalée dans d l'annexe I figure 3.

La préparation de l'appât était fait 4 ou 5 jours avant la sortie pour que la banane soit bien fermentée. Cette préparation s'effectuerait toujours à la maison, pour n'est pas perturbée le lieu de récolte avec l'odeur de l'appât.

2.2.2. Prélèvement des échantillons

Le prélèvement des échantillons se faisait, après l'installation des pièges, nous laissons un temps pour que les spécimens puissent découvrir l'appât. Les pièges étaient visités trois fois par jour c'est-à-dire le matin, à midi et le soir.

Une fois les papillons capturés, nous appliquons, la main pardessus pour capturer l'espèce et l'écrasant au niveau du thorax, la partie du corps ou les ailes sont attachées donc après la tête, puis nous le mettons dans les papillotes.

2.3. Traitement des données au Musée de la Faculté des Sciences

2.3.1. Conservation

La préparation pour la conservation comprend trois étapes :

1. Ramollissement

Les papillons capturés étaient apportés pour le ramollissement avant d'être étalés pour éviter que certains appendices corporels ne se détachent. Si les papillons sont capturés quelques heures avant l'étalage, le ramollissement n'est pas nécessaire.

2. Etalage

L'étalage est le processus qui nous facilite pour bien identifier l'espèces de ces deux faces : ventrale et dorsale. Elle se fait au moyen de l'étaloir, les épingles entomologiques et les rubans. Le papillon est fixé, les ailes bien tendues horizontalement de façon que le bord postérieur de l'aile antérieur fasse un angle droit par rapport au corps du papillon. Ce corps est logé dans un canal creusé dans l'étaloir et fixé au niveau du thorax par l'épingle. Les spécimens étalés sont laissés pendant huit jours à la température ambiante du laboratoire.

3. Conservation définitive

Les spécimens étalés sont stockés dans les boîtes vitrées, après avoir être séchés et sont épinglés avec étiquette. Les spécimens non étalés sont conservés dans les papillotes dans une boîte sous les cristaux de naphtalène.

2.3.2 Identification

Les spécimens ont été identifiés par comparaison avec la collection se trouvant au musée de la Faculté des Sciences de l'Université de Kisangani, celle de KAPIAMBA (1980) et de MASOZERA (1994) et à l'aide de l'ouvrage de BERGER (1981).

2.4. Analyse de données

Pour évaluer la biodiversité des deux blocs forestiers nous avons utilisé les analyses ci-après :

a) Indice de diversité de SHANNON-WIENER (H)

Nous avons calculé l'indice de SHANNON-WIENER (H) pour comparer la richesse spécifique du Jardin Botanique, de la forêt secondaire et de la jachère du Jardin Zoologique de Kisangani. Cet indice de SHANNON-WIENER convient à l'étude comparative des échantillons parce qu'il varie directement en fonction de nombre d'espèces et des effectifs observés.

(1)
$$H = -\sum_{i=1}^{S} P_i \log_2 P_i$$

- (a) H=Indice de diversité biologique
- (b) Pi= $\frac{ni}{N}$ =C'est la probabilité de rencontrer l'espèce qui occupe la i éme rang.
- (c) N= effectifs total des individus capturés (ni)=nombre de spécimens i^{éme} espèce dans l'échantillon étudié.
- (2) H=log2S
- (d) (H') = Indice d'Equitabilité maximale, laquelle correspond au cas où toutes les espèces sont représentées par le même nombre d'individus.
- (e) S = richesse spécifique totale.

$$E = \frac{H}{H'}$$

(f)E = Indice d'Equitabilité qui varie entre zéro et 1.

Elle tend vers zéro quand la quasi totalité des effectifs correspond à une seule espèce du peuplement et il tend vers 1, lorsque chacune des espèces est représentée par le même nombre d'individus. (GAMBALEMOKE, 2008). Les traitements statistiques sont signalés dans l'annexe II.

CHAP.III.RESULTATS

3.1. Résultats obtenus sont présentés sous formes des tableaux sur les pages suivantes :

Tableau (1) Aperçu systématique des échantillons capturés dans les deux sites.

Famille	Genres	Espèces	Nombre des spécimens
Acraeidae	Acraea	Acraea lycoa. Godart, 1819	1
Lycaenidae	Hemiolaus	Hemiolaus coeculus. Hopffer, 1855	1
	Hypolycaena	Hypolycaena liara. Druce, 1890	1
Nymphalidae	Cymothoe	Cymothoe caenis, Drury, 1890	237
		Cymothoe anitorgis, Hewitson, 1874	1
	Charaxes	Charaxes boueti, Feisfhamed, 1895	2
		Charaxes tiridates, Cramer, 1777	4
		Charaxes proteclea, Feisthamel, 1911	4
		Charaxes ameliae, Doumet, 1861	2
		Charaxes numenes, Hewitson, 1865	6
		Charaxes cynthia, Butler, 1923	2
		Charaxes guderiana, Dewitz, 1879	2
		Charaxes cedreatis, Hewitson, 1874	1
		Charaxes smaragdalis, Butler, 1865	1
		Charaxes zingha, Stoll, 1780	2
	и	Charaxes montis, Jackson, 1956	1
		Charaxes candiope, Godart, 1824	1
		Charaxes imperialis, Butter, 1972	1
		Charaxes lucretius, Cramer, 1971	1
	7 8 2 5 8	Charaxes sp.	2
	Ariadne	Ariadne enotrea, Cramer, 1779	8
		Ariadne albisfascia, Joicy et Talbot, 1921	2
	Eurytela	Eurytela hiarbas, Drury, 1782	3
	Junonia	Junonia terea, Drury, 1773	2
	Harma	Harma theobene, Doubleday, 1848	9

Suite de tableau (1)

	Lachnoptera	Lachnoptera dubius, Doubleday, 1781	2
	Hypolimnas	Hypolimnas liara, Beauvais, 1805	2
	Neptidopsis	Neptidopsis ophione, Cramer, 1777	4
	Neptis	Neptis melicerta, Cramer, 1779	4
	Bebearia	Bebearia cottoni, Belthume- Beker, 1908	2
		Bebearia mardonia, Fabricius, 1793	1
	Antanartia	Antanartia delius, Drury, 1782	1
Satyridae	Bicyclus	Bicyclus moyses, Condamin, 1964	47
		Bicyclus sandace, Hewitson, 1877	2
		Bicyclus buea, Strand, 1912	2
		Bicyclus vulgaris, Butler, 1868	192
		Bicyclus cottrelli, Vanson, 1952	2
		Bicyclus campinus, Aurivillius, 1901	3
		Bicyclus dorothea -	7
		Bicyclus smithi, Aurivillius, 1898	8
		Bicyclus ena, Hewitson, 1877	1
		Bicyclus sophrosyne, Plötz, 1888	3
		Bicyclus xenas, Hewitson, 1866	1
	20	Bicyclus evadne, Hewitson, 1866	2
		Bicyclus technotis, Hewitson, 1877	1
		Bicyclus sanaos, Hewitson, 1866	1
		Bicyclus golo, Aurivillius, 1893	1
		Bicyclus swaedneri, Fox, 1963	1
* ****** * ** *		Bicyclus permeno, Doubleday, 1849	2
		Bicyclus saftiza, Hewitson, 1851	1
		Bicyclus sp	7
	Gnophodes	Gnophodes parmeno, Doubleday, 1849	3
	Ypthima	Ypthima doleta, Kirby, 1880	3
	Hallelesis	Hallelesis asochis, Hewitson, 1880	3
4 familles	19 genres	52 espèces et 2 genres non identifies (avec 9 échantillons)	607

Le tableau (1) montre quatre familles (Acraidae, Lycaenidae, Nymphalidae et Satyridae) qui ont été capturées dans les pièges à Charaxes dans les deux sites de récolte. Nous avons capturé au total 607 spécimens répartis, en 4 familles, 19 genres, 52 espèces et 2 échantillons du genre du Charaxes et 7 échantillons du genre *Bicyclus* non identifiés. Parmi les 607 échantillons obtenus au Jardin Zoologique de Kisangani et Jardin Botanique de la Faculté des Sciences de l'Université de Kisangani, trois espèces prédominent les autres espèces en effectif. Il s'agit de *Cymothoe caenis* avec un effectif de 237 qui est une espèce migratrice, *Bicyclus vulgaris* (192) et *Bicyclus moyses* (47) qui sont des espèces cosmopolites.

3.2. Distribution des échantillons des trois biotopes exploités dans les deux sites de recherche.

Le tableau (2) La distribution des échantillons dans la Jachère du Jardin Zoologique Kisangani.

Familles	Espèces	Nombre des	total	%
		spécimens		
Acraeidae	Acraea lycoa	1	1	0,22
Nymphalidae	Cymothoe caenis	150		
	Cymothoe anitorgis	1		
	Neptis melicerta	4		
	Charaxes boueti	2		
	Charaxes tiridates	2		
	Charaxes proteclea	2		
	Charaxes ameliale	1		
	Charaxes numenes	4		
	Charaxes cynthia	2		
	Charaxes guderiana	2		
	Charaxes cedreatis	1	200	43,38%
	Charaxes smaragdalis	1		
	Charaxes zingha	1		
	Charaxes montis	1		
	Charaxes candiopes	1		
	Charaxes lucretius	1		
	Ariadne enotrea	8		
	Ariadne albifacia	1		
	Junonia terea	1		
	Harma thoebene	3		
	Lachnoptera iole	2		
	Hypolimnas dubius	2		
	Neptidopsis ophione	4		
	Antanartia delius	1		
Satyridae	Bicyclus moyses	43		
	Bicyclus sandace	2		

Suite de tableau (2)

Saite de la	Bicyclus buea	2		
	Bicyclus vulgaris	177		
	Bicyclus cottrelli	2		
	Bicyclus campinus	2		
	Bicyclus dorothea	7		
	Bicyclus smithi	7		
	Bicyclus ena	1		
	Bicyclus sophrosyne	3		
	Bicyclus evadne	2		
	Bicyclus technonis	1	260	56,39
	Bicyclus sanaos	1		
	Bicyclus saftiza	1		
	Bicyclus golo	1		
	Bicyclus swaedneri	1		
	Gnophodes parmeno	2		
	Hallelesis asochis	2		
	Ypthima doleta	3		
3 familles	45 espèces	461		100

Les résultats consignés dans le tableau (2) montrent que la richesse spécifique est de 45 espèces en Jachère du Jardin Zoologique Kisangani, avec un effectif de 461. Au cours de nos récoltes, nous avons capturé trois familles dans la jachère qui sont : les Acraeidae avec une abondance relative de 0,22 % ; la famille des Nymphalidae présentent 43,38 % et 56,39 % des Satyridae qui prédominent les autres familles en échantillons. Ainsi les espèces des *Cymothoe caenis* de la famille des Nymphalidae et les *Bicyclus vulgaris* de la famille Satyridae qui étaient capturées régulièrement dans les pièges à Charaxes. Les *Bicyclus vulgaris* occupent la première position en effectifs. Le genre des Charaxes présente une grande diversité spécifique dans la famille des Nymphalidae au niveau de la jachère.

Le tableau (3) La distribution des échantillons en forêt secondaire du Jardin Zoologique.

Familles	Espèces	Nombre des	Total	%
		spécimens		
Lycaenidae	Hemiolaus coeculus	1		
	Hypolycaena liara	1	2	1,69
Nymphalidae	Cymothoe caenis	85		
	Charaxes tiridates	2		
	Charaxes proteclea	2		
	Charaxes ameliae	1	:8	
	Charaxes numenes	2	106	89,83
	Charaxes zingha	1		
	Ariadne albofascia	1	8	
	Eurytela hiabas	3		
	Harma theobene	6		
	Bebearia cottoni	2		
	Bebearia mardani	1		
Satyridae	Bicyclus vulgaris	3		
	Bicyclus cottrelli	1		
	Bicyclus dorothea	1	10	8,47
	Bicyclus smithi	1		
	Bicyclus xenas	1		
	Gnophodes parmeno	2	ю	
3 familles	19 espèces	119	119	100

Le tableau (3) nous révèle que les Lépidoptères Rhopalocères récoltés en forêt secondaire du Jardin Zoologique de Kisangani appartiennent à 3 familles, 19 espèces et 119 spécimens. Les Lycaenidae présentent 1,69 % de l'abondance relative, les Nymphalidae avec 89,83 % qui occupe la première place en effectif en forêt secondaire et celle des Satyridae avec 8,47 %. Les espèces de *Cymothoe caenis* étaient capturées plus par rapport autres échantillons avec un effectif de 85.

Le tableau (4) Distribution des échantillons capturés au Jardin Botanique de la Faculté des Sciences.

Familles	Espèces	Nombre des spécimens	Total	%
Nymphalidae	Cymothoe caenis	2	2	28,57
Satyridae	Bicyclus moyses	2	5	71,43
	Bicyclus vulgaris	3		
2 Familles	3 espèces	7	7	100

Le tableau (4) nous indique les deux familles des Lépidoptères Rhopalocères qui étaient capturés au Jardin Botanique de la Faculté de Sciences. La famille des Nymphalidae qui présentent 28,57 % et la famille des Satyridae qui occupe la première position en abondance de 71,43 %.

3.3. La comparaison de l'indice de la biodiversité de SHANNON-WEINER (H) et d'Equitabilité(E) dans les biotopes classés.

Tableau (5) Résultats de la biodiversité dans les trois biotopes.

Biotopes	P1P9	H	E
Jachère du Zoo-Kis	P ₁		
	P ₂	2,838	0,516
	P ₃		
Forêt secondaire du Zoo-	P ₄		
Kis	P ₅	1,390	0,327
	P ₆		
Jardin Botanique de la	P ₇		
Faculté des Sciences.	P ₈	1,556	0,982
	P ₉		

Légende :-P1...P9 = Pièges à Charaxes

-H= L'indice de biodiversité de SHANNON-WEINER

-E=L'indice d'Equitabilité

Le tableau (5) nous signale les résultats de l'indice de la biodiversité de SHANNON-WEINER et d'Equitabilité obtenu dans les trois biotopes : En Jachère du Zoo-Kis, nous avons obtenu H =2,838 et E= 0,516 ; au niveau de la forêt secondaire nous avons reçu H=1,390 et E=0,327 tandis qu'au Jardin Botanique nous présente H=1,556 et E=0,982.Ces résultats présentent une grande diversité en jachère par rapport à la forêt secondaire et le Jardin Botanique et les espèces trouvées dans les trois biotopes ne sont pas distribuées équitablement.

CHAP.IV. DISCUSSIONS

Les résultats ci-dessus nous présentent dans sa globalité 607 spécimens répartis à quatre familles, 19 genres, 52 espèces et 9 spécimens des deux genres : de *Charaxes* et de *Bicyclus* qui étaient non identifiés. La présence de ces quatre familles peut s'expliquer du technique utilisée pour la capture que nous avions appliqué des pièges à Charaxes.

Nous parvenons à trouver une convergence avec le travail d'ALEKO (2006) qui avait capturé à l'aide du piège à la banane dans la Réserve Forestière de Masako. Il avait obtenu comme résultats : 315 spécimens, 19 genres et 63 espèces, réparties dans les quatre familles (les Acraeidae, les Lycaenidae, les Nymphalidae et les Satyridae.)

De même DALL'ASTA (1996) signale que la plupart des espèces volant dans la forêt sont des espèces typiquement forestières. Celles qui sont capturées ou observées dans les endroits dégradés sont très souvent des espèces de canopée, qui suivent la limite supérieure de la formation des arbres, cependant, à l'intérieur de la forêt, des espèces typiques de sous – bois sont capturées. Les différents habitats de sous – bois et les habitats dégradés sont faciles à caractériser à partie des pièges à Charaxes.

En ce qui concerne nos résultats ci-dessus à ceux de BERGER (1981); KAPIAMBA (1980); MASOZERA (1994); BADJEDJEA (2006) et ASUMANI (2007) qui ont capturé les Lépidoptères Rhopalocères à l'aide du filet à papillons. Ils sont parvenus à capturer plus des familles par rapport à la méthode de capture à piège à Charaxes.

A l'aide de piège à banane, nous parvenons à récolter 4 familles. Cela peut s'expliquer du rapport de DALL'ASTA et al (1996) qui signalent que les papillons adultes se nourrissent en suçant le nectar des fleurs, le jus des fruits mûrs et des cadavres d'animaux et aussi l'urine et les déjections. En général, les adultes se nourrissent peu, mais il y a des exceptions. Les papillons des genres Charaxes (Nymphalidae) par exemple, ont un abdomen extrêmement élargi à cause d'une consommation excessive des fruits pourris.

Pour de raison que nous avons travaillé dans les deux sites : Jardin Botanique de la Faculté des Sciences et le Jardin Zoologique de Kisangani qui est classé à deux biotopes (la jachère et la forêt secondaire). Nous allons discuter à deux étapes ci-dessous :

a. Jardin Zoologique.

A l'issue de la récolte de nos études des Lépidoptères Rhopalocères capturés aux pièges à Charaxes au Jardin Zoologique de Kisangani, où nous avons subdivisé ce jardin à deux biotopes : c'est-à-dire le jachère et la forêt secondaire ou forêt à *Terminalia superba*. Il sera très intéressant de discuter en deux étapes :

(1) Jachère du Jardin Zoologique.

Nos résultats de capture en jachère du Jardin Zoologique de Kisangani nous présentent 461 spécimens des Lépidoptères Rhopalocères, réparties à trois familles qui sont les Acraeidae avec une fréquence de 0,22%, la famille des Nymphalidae avec 43,38% et celle des Satyridae qui prédominent les autres familles avec 56,39 %. Parmi, les espèces capturées en jachère deux espèces dominent les autres espèces dont il s'agit de Cymothoe caenis et Bicyclus vulgaris. Les genres des Charaxes sont plus diversifiés en espèces dans la jachère du Jardin Zoologique de Kisangani.

Ces résultats trouvent une convergence avec le travail d'ALEKO (2006) avait capturé à Masako au niveau de la jachère les 4 familles trouvées au niveau du Zoo-Kis. Les Nymphalidae avec une fréquence de 42,3%, avec 9 genres, et 11 espèces; 50% des Satyridae groupées à 4 genres, les Acraeidae présentent un effectif moyen. Nos résultats s'écartent à la famille des Lycaenidae où nous n'avons pas capturé en jachère du Zoo – Kis.

Autres particularités viennent aux résultats de BADJEDJEA (2006) qui avait étudié les Lépidoptères Rhopalocères à Masako, où il avait capturé 162 espèces, 48 genres et 8 familles. De même, ASUMANI (2007) qui avait récolté dans la Réserve Forestière de la Yoko. Ces résultats en jachère, étaient constitués de 467 spécimens, répartis à 7 familles qui sont : les Nymphalidae avec une fréquence de 39,40%, les Pieridae 24,62%, les Lycaenidae 16,92%, les Acraeidae 7,22%, les Papilionidae 7,07%, les Satyridae 4,50% et 2,14% des Danaidae qui étaient capturées à l'aide de filet à papillons.

(2) Forêt secondaire du Jardin Zoologique.

En forêt secondaire du Zoo-Kis, nous avons récolté dans les pièges à la banane 119 spécimens 19 espèces et 3 familles des Lépidoptères Rhopalocères. Les Lycaenidae présentent l'abondance de 1,71%, avec 2 espèces. Nous signalons que la présence de ces deux espèces : Hemiolaus caeculus et Hypolycaena liara dans la forêt secondaire du Zoo-Kis peut s'expliquer que cette forêt secondaire tend vers une évolution d'une forêt primaire. La famille des Nymphalidae prédomine les autres familles avec l'abondance de 90,98%, le genre des Charaxes qui est très diversifié sur le plan spécifique. La famille des Satyridae présente une faible fréquence de 7,69%. Ainsi les Cymothoe caenis qui occupent la première position avec un effectif de 85 spécimens par rapport autres groupements spécifiques.

Ces résultats convergent avec le travail d'ALEKO (2006) selon ces évaluations en forêt secondaire de Masako. Il avait capturé 4 familles, c'est-à-dire les Nymphalidae présentent 50 % de l'abondance, avec 20 genres, 9 espèces, tandis et Lycaenidae 14,7 %. La différence provient de la famille des Acraeidae d'où ALEKO (2006) avait capturé en forêt secondaire de Masako. Mais, au niveau de la forêt secondaire, du Zoo-Kis nous n'avons pas capturé cette famille.

En comparant les familles, les plus représentées en forêt secondaire du Zoo-Kis, nous trouvons aussi un parallélisme avec ceux d'ASUMANI (2007) qui avait capturé en forêt secondaire de la Yoko les mêmes familles. Par exemple les Nymphalidae avec 63,57% en effectif. Une différence en résulte au niveau des autres familles où nous pouvons citer quelques exemples des familles : les Pieridae avec 6,72%, les Lycaenidae avec 3,7%. Cela peut s'expliquer pour des raisons de la méthode utilisée par ASUMANI (2007).

b. Jardin Botanique de la Faculté des Sciences.

Dans ce troisième biotope, au cours de nos récoltés, à l'aide de pièges à Charaxes, où nous avons capturé au total 7 spécimens de Lépidoptères Rhopalocères qui étaient répartis à deux familles: les Nymphalidae prédominent avec 71,43% avec 2 espèces, tandis que les Satyridae occupent la seconde position avec une seule espèce de *Cymothoe caenis*.

Par rapport aux autres biotopes explorés (la jachère et la forêt secondaire du Zoo-Kis) nous avons capturé peu des spécimens au Jardin Botanique de la Faculté des Sciences suite en une difficulté rencontrée au cour de la périodes de nos récoltes nous sommes butés à la présence de Cercopithecus l'hoesti. Ces espèces consommaient nos appâts après chaque installation des pièges à Charaxes. Autre différence provient de sa grandeur et son emplacement qui est entouré par la population urbaine et de sa superficie qui est de 6527 même et 77 parcelles.

La même forêt artificielle de la Faculté des Sciences de l'Université de Kisangani n'a pas échappé à l'action humaine. En premier lieu, nous retrouvons les étudiants à la recherche d'un bon endroit pour étudier durant toute l'année académique. Ce jardin est transformé en une

salle de lecture ou de loisir. L'homme en cherchant les bois de chauffage, les fruits, ... Ces actions participent aux processus de la déforestation et de la perte de certaines espèces animales et végétales.

En ce qui concerne la comparaison de ces deux sites : le Zoo-Kis et Jardin Botanique de la Faculté des Sciences de l'Université de Kisangani. Le Jardin Zoologique de Kisangani présente une dominance à faune de Lépidoptères Rhopalocères par rapport aux résultats obtenus au Jardin Botanique de la Faculté des Sciences.

L'indice de la biodiversité de SHANNON WEINER (H) nous présente une grande diversité en jachère par rapport à la forêt secondaire et le Jardin Botanique et l'indice d'Equitabilité (E), nous signale ceux trois biotopes, les espèces ne sont pas bien réparties équitablement à cause de la dominance en effectif des deux espèces (Cymothoe caenis et Bicyclus vulgaris).

CONCLUSION ET SUGGETIONS

En conclusion de cette étude comparative des Lépidoptères Rhopalocères capturés à l'aide des pièges à Charaxes au Jardin Zoologique de Kisangani et le Jardin Botanique de la Faculté des Sciences, nous avons retenu ce qui suit :

A l'issue de cette évaluation, en termes de la biodiversité biologique, nous avons capturé dans les deux sites 607 spécimens, 52 espèces des Lépidoptères Rhopalocères, réparties en 19 genres et 4familles (Acraeidae, Lycaenidae, Nymphalidae et Satyridae).

En effet, sur les quatre familles signalées ci-dessus, nous avons obtenu comme résultats ci-après :

Pour la famille des Acraeidae, nous avons capturé une seule espèce (Acraea lycoa).

Dans la famille des Lycaenidae, nous avons identifié deux espèces: Hemiolaus caeculus, Hypolicaena liara ou ces espèces étaient capturées seulement en forêt secondaire. La présence de ces espèces explique que cette forêt secondaire tend vers l'évolution d'une forêt primaire.

En ce qui concerne la famille des Nymphalidae, qui est la plus diversifiée en espèce nous avons obtenu les espèces suivantes: Cymothoe caenis, Cymothoe anitorgis, Charaxes zingha, Charaxes boueti, Charaxes tiridates, Charaxes montis, Charaxes candiope, Charaxes imperialis, Charaxes lucretius, Ariadne enotrea, Ariadne albifascia, Eurytela hiarbas, Junonia terea, Harma theobene, Lachnoptrera iole, Hyponimnas dubius, Neptidopsis ophione, Neptis melicerta, Bebearia cottoni, Bebearia mardania, Antanaria delius.

A propos de la famille des Satyridae, nous avons récolté comme espèces : Bicyclus moyses, Bicyclus golo, Bicyclus sandace, Bicyclus cottrelli, Bicyclus campus, Bicyclus dorothea, Bicyclus smithi, Bicyclus ena, Bicyclus

sophrosyne, Bicyclus xenas, Bicyclus evadne, Bicyclus technotis, Bicyclus sanaos, Bicyclus swaedneri, Bicyclus parmeno, Bicyclus saftiza, Gnophodes parmeno, Ypthima doleta et Hallelesis asochis.

Ces résultats confirment que les pièges à Charaxes sont plus efficaces pour la capture de ces quatre familles (Acraeidae, Lycaenidae, Nymphalidae et le Satyridae)

Au terme de notre étude, parmi les deux hypothèses que nous avons mises en épreuve ont été confirmées :

Il en résulte une différence entre le Jardin Zoologique de Kisangani et le Jardin Botanique de la Faculté des Sciences de l'Université de Kisangani à faune de Lépidoptères Rhopalocères.

Les résultats confirment la deuxième hypothèse que dans le Jardin Zoologique et Botanique et les autres Réserves Forestières de la ville de Kisangani, il existe une différence à faune des Lépidoptères Rhopalocères. Cela peut s'expliquer par les diverses activités humaines qui provoquent la destruction de forêt. Ces activités peuvent influencer que la richesse spécifique en Lépidoptère Rhopalocères suivent les gradients : en jachère 45 espèces, en forêt secondaire 19 espèces et au Jardin Botanique 3 espèces.

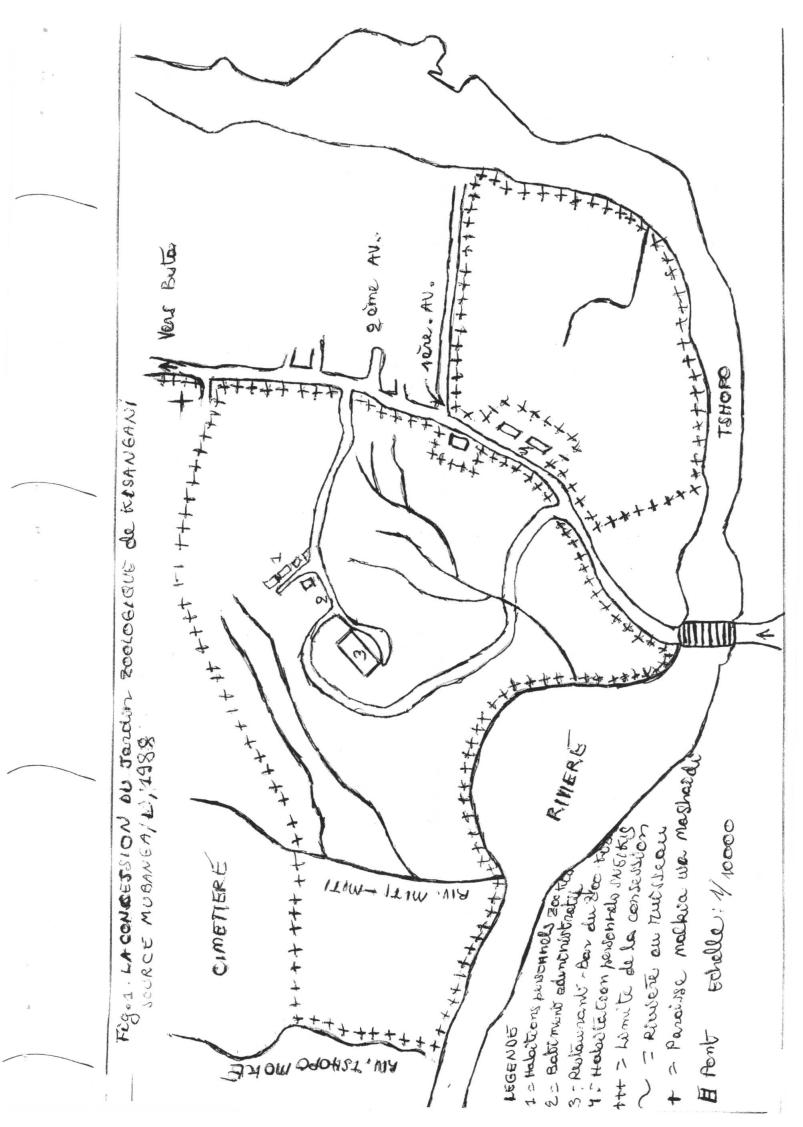
Suggestions.

Dans le souci de bien évaluer la diversité biologique des Lépidoptères Rhopalocères dans la région de Kisangani et ces environs, nous souhaitons aux futures recherches de continues avec cette étude, car elle est moins explorée dans cette région.

REFERENCES BIBLIOGRAPHIQUES

- ALEKO, A., 2006. Contribution à l'étude des papillons du jour (Lepidoptera Rhopalocera) dans la Réserve Forestière de MASAKO à Kisangani (République démocratique du Congo). Monographie inédite, Fac. Sc., UNIKIS, 46 p.
- ASUMANI, N., 2007 contribution à l'étude de la biodiversité des papillons du jour (Lepidoptera Rhopalocera) dans le Réserve Forestière de la YOKO. Mémoire inédit, Fac. Sc., UNIKIS, 46 p.
- BADJEDJEA, B., 2006.Contribution à l'étude de la Biodiversité de Lépidoptère Rhopalocère de Réserve forestière de Masako à Kisangani (République démocratique du Congo) monographie inédite, Fac. Sc., UNIKIS, 31 p.
- BERGER.L., 1940.Lépidoptères exploration du Parc National Albert, Fascicule 30, Institut des Parcs Nationaux du Congo Belge,
- BERGER. L., 1981. Les Papillons du Zaïre, WEISSEN BRUCH, Bruxelles, 543 p.
- BEBAUCHE, H. 1944. Lepidoptera heterocera, Hayez, Bruxelles 28 p.
- BOURGOGNE, J., 1979.Ordres Lépidoptères in GRASSE, pp traite de Zoologie, Anatomie, Systématique Biologique, Insectes Supérieures et Hémiptères du Tome x, fascicules 1er Masson. Pp172 448
- BOLA, M-L., 2002. Épiphytes Vasculaires et Porophytes de écosystème urbaine de Kisangani D.E.S. inédit, Fac. Sc., UNIKIS, pp 28 33
- BOYEMBA, B., 2006. Diversités et générations, des essences forestières exploitées dans les forêts de Kisangani (R.D. Congo) D.E.A., inédit, ULB, pp 6-7.

- DALL'ASTA, U. & FERMON., A.1996.Les papillons (Lepidoptera, Rhopalocera) en tant qu'indicateurs écologiques pour la forêt tropicales et mise en place d'un programme dans la forêt de la Bossémative (Est de la côte d'Ivoire) Rapport Lepidoptera, n°4, 32 p.
- DALL'ASTA, U. et FERMON, H., 1996. Analyse quantitative et qualitative des échantillons de papillons (Lepidoptera Rhopalocera) prélevés en 1995 dans la forêt classée de la Bossematié à (Côte d'Ivoire). Rapport Lepidoptera, n°5. pp.1-15
- DALL'ASTA, U. HECQ, J. et LARSEN. 1994. L'emploi de papillons du jour (Insectes: Rhopalocera & Grypocera) comme "espèces monitrices" et "espèces indicatrices" dans les projets de réhabilitation des forêts dans l'Est de la côte d'ivoire, Rapport Lepidoptera N°1 pp5-22.
- GAMBALEMOKE, n, 2008. Contribution à l'étude de la biodiversité des musaraignes (Soricomorpha, Mammalia) des blocs forestiers inter rivières du bassin du Congo dans la région de Kisangani (RD Congo) tome 1, D.E.S., Fac. SC, UNIKIS, 121p
- KAPIAMBA, M. 1980. Notes sur l'inventaires systématique des Lépidoptères Rhopalocères, de l'île KONGOLO (Haut – Zaïre), mémoire inédit, Fac. Sc., UNIKIS, 32p
- KANKONDA, B et WETSI, L., 1992. Données préliminaires sur les chenilles comestibles de Kisangani et ses environs (Zaïre), Fac. Sc. UNIKIS, vol. 8,pp 113 119
- KANKONDA, B., 1984.Contribution à l'étude du développement des Lépidoptères d'intérêt économique. Mémoire inédit, Fac. Sc. UNIKIS., 30p


- KADANGE, N., 1996. Distribution écologique et Essaie de capture recapture de Petits mammifères (Rongeurs et Insectivores) de la concession du Jardin Zoologique de Kisangani, mémoire inédit, Fac. des Sciences, UNIKIS, 41p
- KESEREKA, S., 1996. Flore et Aspects dynamiques du Jardin Botanique de la faculté des sciences à Kisangani (Zaïre), mémoire inédit, Fac.Sc. UNIKIS 74pp
- LISINGO, L. 2005. Contribution à l'étude des chenilles comestibles et de leurs plantes hôtes à Kisangani et ses environs. Monographie Inédite, fac, Sc. UNIKIS, 35p.
- LISINGO, L.2007. Etude des chenilles comestibles et autres usages de leurs plantes hôtes dans les Distriques de Kisangani, mémoire inédit, Fc.Sc. UNIKIS, 57 pages.
- MASOZERA, K., 1994. Contribution à l'inventaire des Lépidoptères Rhopalocères de MASAKO à Kisangani, mémoire inédit, Fac. Sc., UNIKIS, 32p
- MUBANGA, L.1988.Enquête sur les conditions de vie des animaux sauvages en captivité dans la ville de Kisangani, Mémoire inédit, Fac. Des Sciences, UNIKIS ,50 p.
- NYAKABWA, M., 1982. Phytocenose de l'écosystème Urbaine de Kisangani. Thèse de doctorat inédit, tome I. Fac. Sc. UNIKIS, 418p
- OKANGOLA, E., 2008. Contribution à l'étude biologique et écologique des chenilles comestibles de la région de Kisangani. Cas de la réserve forestière de la Yoko (Ubundu, République Démocratique du Congo) DEA. Fac. Sc. UNIKIS 79p
- OVERLAET, F.G. Danaidae, Satyridae, Nymphalidae, Acraeidae, Hayez, Bruxelles, 106p

- UDAR, U.K, DANADU, M., LIKUNDE, E., NDJELE, M.B., et UPOKI, A. 2003 Le Jardin Botanique de la Faculté des Sciences de l'Université de Kisangani: Un écosystème à biodiversité non négligeable .Annales de la faculté des sciences de l'UNIKIS, vol 12, tome 2 480 – 484pp.
- VANDE, W., J.P., 2004. Forêts d'Afrique centrale, la Nature et l'homme, La nature et l'homme Lannoosa, Tielt Belgique, 367p
- WHITE, L., EDWARDS, A. 2000. Conservation en forêt pluviale Africaine:
 Méthodes de recherche. Wildlife conservation society. New York
 444p

WEBOGRAPHIE

- http://www. Tourrette levens. Org/Pappillons
- http://User. Skynet. be/ les papillons/pages/les % 20 papillons
- http://membres.lycos.fr/liboupat/lepido/biologie.htm
- http://www.les insectes du quebec.

ANNEXEI

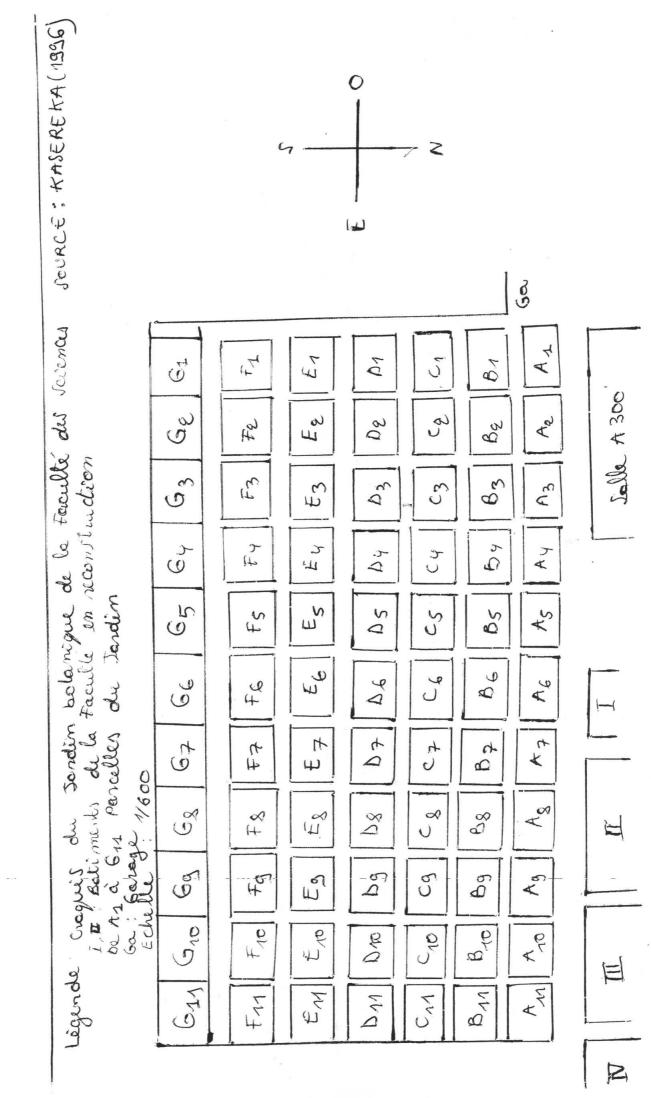
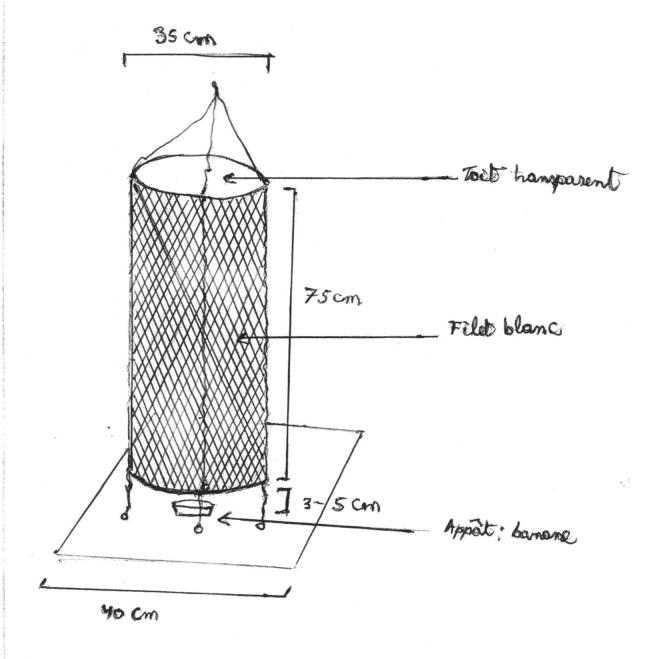



Figure 2

Piège à Characes Figure 3,

ANNEXE

ANNEXE II
Tableau (6) Evaluation de l'indice de la biodiversité de SHONNON WEINER en Jachère du Zoo-Kis.

Espèces	Ni	Pi	(Pi) ²	log2Pi	(Pi)(log2Pi)
Acraea lycoa	1	0,0021	0,00004	-0,086011	0,001692
Cymothoe anitorgis	1	0,0021	0,00004	-0,086011	0,001692
Cymothoe caenis	150	0,3253	0,10582	-0,146802	0,047754
Neptis melicerta	4	0,0086	0,000073	-0,621715	0,005346
Charaxes boueti	2	0,0043	0,000018	-0,712325	0,003062
Charaxes tiridates	2	0,0043	0,000018	-0,712325	0,003062
Charaxes protoclea	2	0,0043	0,000018	-0,712325	0,003062
Charaxes ameliale	1	0,0021	0,00004	-0,086011	0,001692
Charaxes numenes	4	0,0086	0,000073	-0,621715	0,005346
Charaxes cynthia	2	0,0043	0,000018	-0,712325	0,003062
Charaxes guderiana	2	0,0043	0,000018	-0,712325	0,003062
Charaxes cedreatis	1	0,0021	0,00004	-0,086011	0,001692
Charaxes smaragdalis	1	0,0021	0,00004	-0,086011	0,001692
Charaxes zingha	1	0,0021	0,00004	-0,086011	0,001692
Charaxes montis	1	0,0021	0,00004	-0,086011	0,001692
Charaxes candiopes	1	0,0021	0,00004	-0,086011	0,001692
Charaxes imperealis	1	0,0021	0,00004	-0,086011	0,001692
Charaxes lycreatius	1	0,0021	0,00004	-0,086011	0,001692
Charaxes enotrea	8	0,000299	0,000299	-0,530348	0,009175
Ariadne albifacia	1	0,0021	0,00004	-0,086011	0,001692
Junonia terea	2	0,0043	0,000018	-0,712325	0,003062
Harma theobene	3	0,0065	0,000042	-0,658313	0,004279
Lachnoptera iole	2	0,0043	0,000018	-0,712325	0,003062

Hypolimnas dubius	2	0,0043	0,000018	-0,712325	0,003062
Neptidopsis ophione	4	0,0086	0,000073	-0,621715	0,005346
Antana rtia delius	1	0,0021	0,00004	-0,086011	0,001692
Bicyclus moyses	43	0,0932	0,008686	-0,310205	0,028911
Bicyclus sandance	2	0,0043	0,000018	-0,712325	0,003062
Bicyclus buea	2	0,0043	0,000018	-0,712325	0,003062
Bicyclus vulgaris	177	0,3839	0,147379	-0,12515	0,04845
Bicyclus cottrelli	2	0,0043	0,000018	-0,712325	0,003062
Bicyclus campinus	2	0,0043	0,000018	-0,712325	0,003062
Bicyclus dorothea	7	0,0151	0,022801	-0,588127	0,00888
Bicyclus smithi	7	0,0151	0,022801	-0,588127	0,00888
Bicyclus ena	1	0,0021	0,000004	-0,806011	0,001692
Bicyclus sophrosine	3	0,0065	0,000042	-0,658313	0,004279
Bicyclus evadne	2	0,0043	0,000018	-0,712325	0,003062
Bicyclus technonis	1	0,0021	0,000004	-0,806011	0,001692
Bicyclus sanaos	1	0,0021	0,000004	-0,806011	0,001692
Bicyclus saftiza	1	0,0021	0,000004	-0,806011	0,001692
Bicyclus golo	1	0,0021	0,000004	-0,806011	0,001692
Bicyclus swaedneri	1	0,0021	0,000004	-0,806011	0,001692
Bicyclus parmeno	2	0,0043	0,000018	-0,712325	0,003062
Hallelesis asochis	2	0,0043	0,000018	-0,712325	0,003062
Yptima doleta	3	0,0065	0,000042	-0,658313	0,004279
45 espèces	461	1	0,26347	-2,8378073	

H = 2,838

E=0,5167

Espèces	Ni	Pi	(Pi) ²	log2Pi	(Pi)(log2Pi)
Hemiolaus coeculus	1	0,0084	0,00007	-6,89541	0,0000482
Hypolicaena liara	1	0,0084	0,00007	-6,89541	0,0000482
Cymothoe caenis	85	0,7142	0,5102	-0,4856	0,346816
Charaxes tiridates	2	0,0168	0,00028	-5,895414	0,099042
Charaxes protoclea	2	0,0168	0,00028	-5,895414	0,099042
Charaxes ameliale	1	0,0084	0,00007	-6,89541	0,000482
Charaxes numenes	2	0,0168	0,00028	-5,895414	0,099042
Charaxes zingha	1	0,0084	0,00007	-6,89541	0,0000482
Ariadne albifascia	1	0,0084	0,00007	-6,89541	0,0000482
Eurytela hiarbas	3	0,0252	0,00063	-5,3104 5	0,133823
Harma theobene	6	0,0504	0,002542	-4.309874	0,217303
Bebearia cottoni	2	0,0001	0,00028	-5,895414	0,217303
Bebearia mardania	1	0,0084	0,00007	-6,89541	0,000482
B icyclus vulgaris	5	0,0424	0,00176	-4,5734 81	0,1920086
Bicyclus cottrelli	1	0,0084	0,00007	-6,89541	0,000482
Bicyclus dorothea	1	0,0084	0,00007	-6,89541	0,000482
Bicyclus smithi	1	0,0084	0,00007	-6,89541	0,000482
bicyclus xenas	1	0,0084	0,00007	-6,89541	0,000482
Gnophodes parmeno	2	0,0168	0,00028	-5,895414	0,099042
19 espèces	119				1,39002

H=1,39002

E=0,32722

Tableau (8) Evaluation de la biodiversité dans le Jardin Botanique de la Faculté des Sciences

<i>Esp</i> èces	Ni	Pi	$(Pi)^2$	Log2(Pi)	(Pi)(log2Pi)	
Cymothoe caenis	2	0,2857	0,081624	-1,807	0,51639	
Bicyclus moyses	2	0,2857	0,081624	-1,807	0,51639	
Bicyclus vulgaris	3	0,4287	0,081624	-1,22263	0,52396	
3 espèces	7	1,0001			1,55674	

H=1,55674

E=0,98219

ANNEXE III

MOIS DE FEVRIER

1	Date	Espèce	Famille	Piège	Biotope	N°
	23/02	Cymothoe caenis	Nymphalidae	P1	JZ/J	1
	23/02	Cymothoe caenis	Nymphalidae	P1	JZ/J	2
	23/02	Bicyclus sandance	Satyridae	P1	JZ/J	3
1:	23/02	Cymothoe caenis	Nymphalidae	P1	JZ/J	4
	23/02	Cymothoe caenis	Nymphalidae	P1	JZ/J	5
	23/02	Bicyclus sandance	Satyridae	P1	JZ/J	6 7
:	23/02	Bicyclus moyses	Satyridae	P1	JZ/J	7
:	23/02	Bicyclus buea	Satyridae	P1	JZ/J	8
1	23/02	Bicyclus moyses	Satyridae	P2	JZ/J	9
	23/02	Neptis melicerta	Nymphalidae	P1	JZ/J	10
:	23/02	Cymothoe caenis	Nymphalidae	P2	JZ/J	11
- :	23/02	Cymothoe caenis	Nymphalidae	P4	JZ/J	12
1	23/02	Cymothoe caenis	Nymphalidae	P4	JZ/FS	13
	23/02	Cymothoe caenis	Nymphalidae	P3	JZ/J	14
1:	23/02	Cymothoe anitorgis	Nymphalidae	P3	JZ/J	15
:	23/02	Cymothoe caenis	Nymphalidae	P4	JZ/FS	16
	23/02	Cymothoe caenis	Nymphalidae	P4	JZ/FF	17
	23/02	Cymothoe caenis	Nymphalidae	P4	JZ/FF	18
	23/02	Cymothoe caenis	Nymphalidae	P4	JZ/FS	19
	23/02	Cymothoe caenis	Nymphalidae	P4	JZ/FS	20
	23/02	Cymothoe caenis	Nymphalidae	P4	JZ/FS	21
	23/02	Cymothoe caenis	Nymphalidae	P4	JZ/FS	22
	23/02	Cymothoe caenis	Nymphalidae	P4	JZ/FS	23
1:	23/02	Cymothoe caenis	Nymphalidae	P4	JZ/FS	24
1	23/02	Cymothoe caenis	Nymphalidae	P5	JZ/FS	25
1:	23/02	Cymothoe caenis	Nymphalidae	P5	JZ/FS	26
1	23/02	Cymothoe caenis	Nymphalidae	P5	JZ/FS	27
12	23/02	Cymothoe caenis	Nymphalidae	P5	JZ/FS	28
:	23/02	Cymothoe caenis	Nymphalidae	P5	JZ/FS	29
:	23/02	Cymothoe caenis	Nymphalidae	P5	JZ/FS	30
:	23/02	Cymothoe caenis	Nymphalidae	P5	JZ/FS	31
1	23/02	Bicyclus vulgaris	Satyridae	P2	JZ/J	32
1	23/02	Cymothoe caenis	Nymphalidae	P3	JZ/J	33
1	23/02	Cymothoe caenis	Nymphalidae	P3	JZ/J	34
1	23/02	Cymothoe caenis	Nymphalidae	P3	JZ/J	35
1	23/02	Cymothoe caenis	Nymphalidae	P3	JZ/J	36
1	23/02	Cymothoe caenis	Nymphalidae	P3	JZ/J	37
12	23/02	Bicyclus moyses	Satyridae	P3	JZ/J	38
	23/02	Bicyclus vulgaris	Satyridae	P3	JZ/J	39
- 1	23/02	Cymothae caenis	Nymphalidae	P3	JZ/J	40
	23/02	Bicyclus vulgaris	Satyridae	P2	JZ/J	41
	23/02	Bicyclus moyses	Satyridae	P2	JZ/J	42
	23/02	cymothoe caenis	Nymphalidae	P2	JZ/J	43
2	23/02	cymothoe caenis	Nymphalidae	P2	JZ/J	44

MOIS DE FEVRIER

Dates	Espèces	Familles	Pièges	Biotopes	N°
23/02	Cymothoe caenis	Nymphalidae	P2	JZ/J	45
23/02	Charaxes boueti	Nymphalidae	P2	JZ/J	46
23/02	Cymothoe caenis	Nymphalidae	P2	JZ/J	47
23/02	Cymothoe caenis	Nymphalidae	P2	JZ/J	48
23/02	Cymothoe caenis	Nymphalidae	P2	JZ/J	49
23/02	Cymothoe caenis	Nymphalidae	P2	JZ/J	50
24/2	Ariadne enotrea	Nymphalidae	P1	JZ/J	51
24/2	Bicyclus moyses	Satyridae	P1	JZ/J	52
24/2	Bicyclus moyses	Satyridae	P1	JZ/J	53
24/2	Cymothoe caenis	Nymphalidae	P1	JZ/J	54
24/2	Bicyclus moyses	Satyridae	P1	JZ/J	55
24/2	Cymothoe anitorgis	Nymphalidae	P3	JZ/J	56
24/2	Cymothoe caenis	Nymphalidae	P4	JZ/FS	57
24/2	Cymothoe caenis	Nymphalidae	P4	JZ/FS	58
24/2	Bicyclus cottrelli	Satyridae	P4	JZ/FS	59
24/2	Cymothoe caenis	Nymphalidae	P4	JZ/FS	60
24/2	Cymothoe caenis	Nymphalidae	P4	JZ/FS	61
24/2	Bicyclus campinus	Satyridae	P4	JZ/FS	62
24/2	Cymothoe caenis	Nymphalidae	P4	JZ/FS	63
24/2	Cymothoe caenis	Nymphalidae	P4	JZ/FS	64
24/2	Cymothoe caenis	Nymphalidae	P4	JZ/FS	65
24/2	Cymothoe caenis	Nymphalidae	P4	JZ/FS	66
24/2	Cymothoe caenis	Nymphalidae	P4	JZ/FS	67
24/2	Bicyclus moyses	Satyridae	P4	JZ/FS	68
24/2	Bicyclus moyses	Satyridae	P4	JZ/FS	69
24/2	Cymothoe caenis	Nymphalidae	P4	JZ/FS	70
24/2	Cymothoe caenis	Nymphalidae	P3	JZ/J	71
24/2	Bicyclus cottrelli	Satyridae	P3	JZ/J	72
24/2	Bicyclus campinus	Satyridae	P3	JZ/J	73
24/2	Cymothoe caenis	Nymphalidae	P4	JZ/FS	74
24/2	Cymothoe caenis	Nymphalidae	P5	JZ/FS	75
24/2	Cymothoe caenis	Nymphalidae	P5	JZ/FS	76
24/2	Bicyclus vulgaris	Satyridae	P5	JZ/FS	77
24/2	Cymothae caenis	Nymphalidae	P5	JZ/FS	78
24/2	Bicyclus vulgaris	Satyridae	P5	JZ/FS	79
24/2	Cymothoe vulgaris	Satyridae	P5	JZ/FS	80
24/2	Bicyclus vulgaris	Satyridae	P6	JZ/FS	81
24/2	Cymothoe caenis	Nymphalidae	P6	JZ/FS	82
24/2	Bicyclus vulgaris	Satyridae	P3	JZ/J	83
24/2	Cymothae caenis	Nymphalidae	P3	JZ/J	84
24/2	Bicyclus vulgaris	Satyridae	P3	JZ/J	85
24/2	Bicyclus culgaris	Satyridae	P3	JZ/J	86
24/2	Bicyclus moyses	Satyridae	P3	JZ/J	87
24/2	Cymothae caenis	Nymphalidae	P3	JZ/J	88
24/2	Bicyclus vulgaris	Satyridae	P3	JZ/J	89
24/2	Bicyclus vulgaris	Satyridae	P3	JZ/J	90
24/2	Cymothae caenis	Nymphalidae	P3	JZ/J	91
24/2	Cymothae caenis	Nymphalidae	P3	JZ/J	92
24/2	Bicyclus vulgaris	Satyridae	P3	JZ/J	93
24/2	Bicyclus moyses	Satyridae	P3	JZ/J	94
24/2	Cymothoe caenis	Nymphalidae	P3	JZ/J	95
24/2	Bicyclus moyses	Satyridae	P2	JZ/J	96
24/2	Bicyclus moyses	Satyridae	P2	JZ/J	97

24/2	Bicyclus vulgaris	Satyridae	P2	JZ/J	98
24/2	Bicyclus vulgaris	Satyridae	P2	JZ/J	99
24/2	Cymothoe caenis	Nymphalidae	P2	JZ/J	100
24/2	Cymothoe caenis	Nymphalidae	P2	JZ/J	101
24/2	Bicyclus vulgaris	Satyridae	P2	JZ/J	102
24/2	Bicyclus vulgaris	Satyridae	P2	JZ/J	103
24/2	Gnophodes parmeno	Satyridae	P2	JZ/J	104
24/2	Bicyclus vulgaris	Satyridae	P2	JZ/J	105
24/2	Bicyclus vulgaris	Satyridae	P2	JZ/J	106
24/2	Cymothoe caenis	Nymphalidae	P2	JZ/J	107
24/2	Cymothoe caenis	Nymphalidae	P2	JZ/J	108
24/2	Bicyclus vulgaris	Satyridae	P2	JZ/J	109
24/2	Bicyclus moyses	Satyridae	P2	JZ/J	110
24/2	Cymothoe caenis	Nymphalidae	P2	JZ/J	111
24/2	Cymothoe caenis	Nymphalidae	P2	JZ/J	112
24/2	Cymothoe caenis	Nymphalidae	P2	JZ/J	113
24/2	Cymothoe caenis	Nymphalidae	P2	JZ/J	114
24/2	Cymothoe caenis	Nymphalidae	P2	JZ/J	115
24/2	Bicyclus moyses	Satyridae	P2	JZ/J	116
24/2	Bicyclus moyses	Satyridae	P2	JZ/J	117
24/2	Cymothoe caenis	Nymphalidae	P2	JZ/J	118
24/2	Bicyclus vulgaris	Satyridae	P2	JZ/J	119
24/2	Ariadne enotrea	Nymphalidae	P2	JZ/J	120

MOIS DE MARS

	Noms Especes	famille	piège	biotopes	N°	
	Cymothoe caenis	Nymphalidae	P4	JZ/FS	121	
22-mars	Cymothoe caenis	Nymphalidae	P2	JZ/J	122	
22-mars	Cymothoe caenis	Nymphalidae	P2	JZ/J	123	
22-mars	Cymothoe caenis	Nymphalidae	P2	JZ/J	124	
22-mars	Cymothoe caenis	Nymphalidae	P1	JZ/J	125	
22-mars	Cymothoe caenis	Nymphalidae	P1	JZ/J	126	
22-mars	Cymothoe caenis	Nymphalidae	P2	JZ/FS	127	
22-mars	Cymothoe caenis	Nymphalidae	P6	JZ/FS	128	
22-mars	Cymothoe caenis	Nymphalidae	P4	JZ/FS	129	
22-mars	Cymothoe caenis	Nymphalidae	P4	JZ/J	130	
22-mars	Cymothoe caenis	Nymphalidae	P2	JZ/J	131	
22-mars	Cymothoe caenis	Nymphalidae	P1	JZ/J	132	
22-mars	Cymothoe caenis	Nymphalidae	P3	JZ/J	133	
23-mars	Cymothoe caenis	Nymphalidae	P2	JZ/J	134	
23-mars	Cymothoe caenis	Nymphalidae	P2	JZ/J	135	
23-mars	Cymothoe caenis	Nymphalidae	P2	JZ/J	136	
23-mars	Cymothoe caenis	Nymphalidae	P3	JZ/J	137	
	Cymothoe caenis	Nymphalidae	P2	JZ/J	138	
	Cymothoe caenis	Nymphalidae	P3	JZ/J	139	
	Cymothoe caenis	Nymphalidae	P1	JZ/J	140	
	Cymothoe caenis	Nymphalidae	P2	JZ/J	141	
	Cymothoe caenis	Nymphalidae	P4	JZ/FS	142	
	Cymothoe caenis	Nymphalidae	P4	JZ/FS	143	
	Cymothoe caenis	Nymphalidae	P4	JZ/FS	144	
	Cymothoe caenis	Nymphalidae	P4	JZ/FS	145	
	Cymothoe caenis	Nymphalidae	P2.	JZ/J	146	
	Cymothoe caenis	Nymphalidae	P5	JZ/FS	147	
	Cymothoe caenis	Nymphalidae	P5	JZ/FS	148	
	Cymothoe caenis	Nymphalidae	P1	JZ/J	149	
	Cymothoe caenis	Nymphalidae	P1	JZ/J	150	
	Cymothoe caenis	Nymphalidae	P1	JZ/J	151	
	Cymothoe caenis	Nymphalidae	P1	JZ/J	152	
	Cymothoe caenis	Nymphalidae	P1	JZ/J	153	
	Cymothoe caenis	Nymphalidae	P1	JZ/J	154	
	Cymothoe caenis	Nymphalidae	P1	JZ/J	155	
	Cymothoe caenis	Nymphalidae	P1	JZ/J	156	
	Cymothoe caenis	Nymphalidae	P1	JZ/J	157	
	Cymothoe caenis	Nymphalidae	P1	JZ/J	158	
	Cymothoe caenis	Nymphalidae	P5	JZ/FS	159	
	Cymothoe caenis	Nymphalidae	P5	JZ/FS	160	
	Cymothoe caenis	Nymphalidae	P3	JZ/J	161	
	Cymothoe caenis	Nymphalidae	P4	JZ/FS	162	
	Cymothoe caenis	Nymphalidae	P4	JZ/FS	163	
	Cymothoe caenis	Nymphalidae	P4	JZ/FS	164	
	Cymothoe caenis	Nymphalidae	P4	JZ/FS	165	
	Cymothoe caenis	Nymphalidae	P!	JZ/J	166	
	Cymothoe caenis Cymothoe caenis	Nymphalidae	P1	JZ/J	167	
	Cymothoe caenis	Nymphalidae Nymphalidae	P1 P3	JZ/J	168	
20-111013	Cymounos caems	11 y i i pi aliuae	11.0	JZ/J	169	

23-mars	Cymothoe caenis	Nymphalidae	P2	JZ/J	170	
	Cymothoe caenis	Nymphalidae	P2	JZ/J	171	
	Bicyclus vulgaris	Satyridae	P3	JZ/J	172	
	Bicyclus vulgaris	Satyridae	P3	JZ/J	173	
	Bicyclus vulgaris	Satyridae	P3	JZ/J	174	
	Bicyclus vulgaris	Satyridae	P3	JZ/J	175	
	Bicyclus vulgaris	Satyridae	P1	JZ/J	176	
	Bicyclus vulgaris	Satyridae	P1	JZ/J	177	
	Bicyclus vulgaris	Satyridae	P1	JZ/J	178	
	Bicyclus vulgaris	Satyridae	P7	JB	179	
provide the second second second	Bicyclus vulgaris	Satyridae	P5	JZ/FS	180	
	Bicyclus vulgaris	Satyridae	P2	JZ/J	181	
22-mars	Bicyclus vulgaris	Satyridae	P2	JZ/J	182	
22-mars	Bicyclus vulgaris	Satyridae	P1	JZ/J	183	
22-mars	Bicyclus vulgaris	Satyridae	P2	JZ/J	184	
22-mars	Bicyclus vulgaris	Satyridae	P1	JZ/J	185	
23-mars	Bicyclus vulgaris	Satyridae	P2	JZ/J	186	
23-mars	Bicyclus vulgaris	Satyridae	P2	JZ/J	187	
23-mars	Bicyclus vulgaris	Satyridae	P3	JZ/J	188	
22-mars	Bicyclus moyses	Satyridae	P2	JZ/J	189	
22-mars	Hallelesis asochis	Satyridae	P5	JZ/FS	190	
22-mars	Cymothoe caenis	Nymphalidae	P2	JZ/J	191	
23-mars	Hemiolaus liara	Lycaenidae	P3	JZ/FS	192	
23-mars	Eurytela hiarbas	Nymphalidae	P4	JZ/FS	193	
09-mars	Bicyclus vulgaris	Satyridae	P7	JB	194	
23-mars	Junionia terea	Nymphalidae	P2	JZ/J	195	
23-mars	Gnophodes parmen	Satyridae	P4	JZ/FS	196	

MOIS D'AVRIL

DATE		Noms Especes	famille	piège	biotopes	N°	- 1	
	06-avr	Cymothoe caenis	Nymphalidae	P7	JZ/FS		197	
1	20-avr	Cymothoe caenis	Nymphalidae	P1	JZ/J	12	198	
	20-avr	Bicyclus vulgaris	Satyridae	P1	JZ/J		199	
	20-avr	Cymothoe caenis	Nymphalidae	P3	JZ/J		200	
	20-avr	Cymothoe caenis	Nymphalidae	P3	JZ/J		201	
	20-avr	Bicyclus vulgaris	Satyridae	P3	JZ/J		202	
	20-avr	Bicyclus vulgaris	Satyridae	P2	JZ/J		203	
	20-avr	Charaxs tiridates	Nymphalidae	P2	JZ/J		204	
	20-avr	Bicyclus moyses	Satyridae	P1	JZ/J		205	
		Cymothoe caenis	Nymphalidae	P1	JZ/J		206	
	20-avr	Biciclus vulgaris	Satyridae	P1	JZ/J		207	
	20-avr	Biciclus moyses	Satyridae	P1	JZ/J		208	
		Cymothoe caenis	Nymphalidae	P1	JZ/J		209	
		Cymothoe caenis	Nymphalidae	P1	JZ/J		210	
		Ypthyma doleta	Satyridae	P2	JZ/J		211	
		Bicyclus moyses	Satyridae	P2	JZ/J		212	
	20-avr	Bicyclus vulgaris	Satyridae	P2	JZ/J		213	
		Hellelesis asochis	Satyridae	P2	JZ/J		214	
		Bicyclus moyses	Satyridae	P3	JZ/J		215	
	20-avr	Bicyclus smithi	Satyridae	P3	JZ/J		216	

20-avr	Cymothoe caenis	Nymphalidae	P3	JZ/J	217	
20-avr	Cymothoe caenis	Nymphalidae	P3	JZ/J	218	
20-avr	Bicyclus vulgaris	Satyridae	P1	JZ/J	219	
20-avr	Bicyclus moyses	Satyridae	P1	JZ/J	220	
20-avr	Neptis melicerta	Nymphalidae	P2	JZ/J	221	
20-avr	Ariadne enotrea	Nymphalidae	P3	JZ/J	222	

MOIS DE MAI

DATE	Noms Especes	famille	piège	biotopes	N°	.	
03-mai	Bicyclus moyses	Satyridae	P7	JB		223	
03-mai	Bicyclus vulgaris	Satyridae	P7	JB		224	
03-mai	Bicyclus vulgaris	Satyridae	P9	JB		225	
17-mai	Cymothoe caenis	Nyphalidae	P5	JZ/J		226	
17-mai	Cymothoe anitorgis	Nyphalidae	P4	JZ/FS		227	
2022 1000100 202	Ariadne enotrea	Nyphalidae	P3	JZ/J		228	-
	Bicyclus moyses	Satyridae	P3	JZ/J		229	
	Bicyclus vulgaris	Satyridae	P3	JZ/J		230	
	Bicyclus vulgaris	Satyridae	P2	JZ/J		231	
	Bicyclus vulgaris	Satyridae	P2	JZ/J		232	
	Charaxes proteclea	Nyphalidae	P4	JZ/FS		233	
	Bicyclus vulgaris	Satyridae	P3	JZ/J		234	
	Bicyclus vulgaris	Satyridae	P3	JZ/J		235	
	Bicyclus ena	Satyridae	P2	JZ/J		236	
	Bicyclus vulgaris	Satyridae	P2	JZ/J		237	
	Bicyclus campinus	Satyridae	P1	JZ/J		238	
500,000	Bicyclus sp	Satyridae	P1	JZ/J		239	
	Bicyclus vulgaris	Satyridae	P1	JZ/J		240	
	Bicyclus vulgaris	Satyridae	P2	JZ/J		241	
	Bicyclus vulgaris	Satyridae	P2	JZ/J		242	
	Bicyclus vulgaris	Satyridae	P2	JZ/J		243	
17-mai	Cymothoe caenis	Nyphalidae	P2	JZ/J		244	-
17-mai	Bicyclus vulgaris	Satyridae	P1	JZ/J		245	
	Bicyclus vulgaris	Satyridae	P1	JZ/J		246	
	Bicyclus vulgaris	Satyridae	P1	JZ/J		247	
	Cymothoe caenis	Nyphalidae	P1	JZ/J		248	
	Cymothoe canis	Nyphalidae	P2	JZ/J		249	
	Bicyclus moyses	Satyridae	P2	JZ/J		250	
	Cymothoe canis	Nyphalidae	P2	JZ/J		251	
	Cymothoe canis	Nyphalidae	P2	JZ/J		252	
	Cymothoe canis	Nyphalidae	P2	JZ/J		253	
	Cymothoe canis	Nyphalidae	P2	JZ/J		254	
	Cymothoe canis	Nyphalidae	P2	JZ/J		255	
	Cymothoe moyses Cymothoe caenis	Satyridae	P3	JZ/J		256	
	Cymothoe caenis	Nyphalidae Nyphalidae	P3	JZ/J		257	
	Cymothoe caenis	Nyphalidae	P3 P3	JZ/J JZ/J		258 259	
	Bicyclus moyses	Satyridae	P3	JZ/J		260	
	Cymothoe caenis	Nyphalidae	P5	JZ/FS		261	
0.8	Cymothoe caenis	Nyphalidae	P3	JZ/J		262	
	Bicyclus moyses	Satyridae	P3	JZ/S JZ/FS		263	
	Cymothoe caenis	Nyphalidae	P5	JZ/FS JZ/FS		264	
	Cymothoe caenis	Nyphalidae	P5	JZ/FS JZ/FS			
56776	Cymothoe caenis		P5			265	
		Nyphalidae		JZ/FS		266	
	Cymothoe caenis	Nyphalidae	P5	JZ/FS		267	
18-mai	Cymothoe caenis	Nyphalidae	P5	JZ/FS		268	

	Cymothoe caenis	Nyphalidae	P5	JZ/FS	269
	Cymothoe caenis	Nyphalidae	P5	JZ/FS	270
	Cymothoe caenis	Nyphalidae	P4	JZ/FS	271
	Cymothoe caenis	Nyphalidae	P4	JZ/FS	272
	Cymothoe caenis	Nyphalidae	P4	JZ/FS	273
	Cymothoe caenis	Nyphalidae	P4	JZ/FS	274
	Cymothoe caenis	Nyphalidae	P4	JZ/FS	275
Contract to the second	Cymothoe caenis	Nyphalidae	P1	JZ/FS	276
	Cymothoe caenis	Nyphalidae	P1	JZ/J	277
18-mai	Cymothoe caenis	Nyphalidae	P1	JZ/J	278
18-mai	Cymothoe caenis	Nyphalidae	P1	JZ/J	279
	Cymothoe caenis	Nyphalidae	P1	JZ/J	280
	Cymothoe caenis	Nyphalidae	P1	JZ/J	281
	Cymothoe caenis	Nyphalidae	P1	JZ/J	282
18-mai	Cymothoe caenis	Nyphalidae	P3	JZ/J	283
	Cymothoe caenis	Nyphalidae	P3	JZ/J	284
18-mai	Cymothoe caenis	Nyphalidae	P3	JZ/J	285
18-mai	Cymothoe caenis	Nyphalidae	P3	JZ/J	286
18-mai	Cymothoe caenis	Nyphalidae	P3	JZ/J	287
18-mai	Cymothoe caenis	Nyphalidae	P2	JZ/J	288
18-mai	Cymothoe caenis	Nyphalidae	P2	JZ/J	289
18-mai	Cymothoe caenis	Nyphalidae	P2	JZ/J	290
18-mai	Cymothoe caenis	Nyphalidae	P2	JZ/J	291
18-mai	Cymothoe caenis	Nyphalidae	P2	JZ/J	292
18-mai	Cymothoe caenis	Nyphalidae	P2	JZ/J	293
18-mai	Cymothoe caenis	Nyphalidae	P2	JZ/J	294
18-mai	Cymothoe caenis	Nyphalidae	P2	JZ/J	295
18-mai	Cymothoe caenis	Nyphalidae	P2	JZ/J	296
18-mai	Cymothoe caenis	Nyphalidae	P2	JZ/J	297
18-mai	Cymothoe caenis	Nyphalidae	P2	JZ/FS	298
	Cymothoe caenis	Nyphalidae	P4	JZ/FS	299
	Cymothoe caenis	Nyphalidae	P5	JZ/FS	300
	Cymothoe moyses	Satyridae	P5	JZ/FS	301
	Cymothoe caenis	Nyphalidae	P2	JZ/FS	302
	Bicyclus moyses	Satyridae	P2	JZ/J	303
	Bicyclus vulgaris	Satyridae	P2	JZ/J	304
	Cymothoe caenis	Nyphalidae	P1	JZ/J	305
	Cymothoe caenis	Nyphalidae	P1	JZ/J	306
	Cymothoe caenis	Nyphalidae	P1	JZ/J	307
	Cymothoe caenis	Nyphalidae	P1	JZ/J	308
	Cymothoe caenis Cymothoe caenis	Nyphalidae	P1	JZ/J	309
	Cymothoe caenis	Nyphalidae	P1 P1	JZ/J	310
	Cymothoe caenis	Nyphalidae Nyphalidae	P1	JZ/J	311
2700000	Cymothoe caenis		P1	JZ/J JZ/J	312
	Cymothoe caenis	Nyphalidae Nyphalidae	P1		313
	Bicyclus moyses		P2	JZ/J	314
		Satyridae		JZ/J	315
	Bicyclus sophrosyne Bicyclus moyses		P2 P1	JZ/J	316
	Harma theobene	Satyridae		JZ/FS	317
		Nyphalidae	P5	JZ/FS	318
	Bicyclus xenas	Satyridae	P4	JZ/FS	319
	Gnophodes parmen	Satyridae	P5	JZ/FS	320
	Charaxes ameliale	Nyphalidae	P5	JZ/FS	321
	Lachnoptera iole Hypolimna dubius	Nyphalidae	P2	JZ/J	322
10-IIIal	r rypoliiriira dubius	Nyphalidae	P1	JZ/J	323

Ţ

MOIS DE JUIN

DATE	Noms Especes	famille	piège	biotopes	N°	- 1
09-juin	Bicyclus moyses	Satyridae	P9	JB		324
14-juin	Bicyclus dorothea	Satyridae	P2	JZ/J		325
14-juin	Bicyclus vulgaris	Nymphalidae	P1	JZ/J		326
14-juin	Lachnoptera iole	Nymphalidae	P3	JZ/J		327
15-juin	Harma theobene	Satyridae	P1	JZ/J		328
15-juin	Bicyclus vulgaris	Satyridae	P1	JZ/J		329
15-juin	Harma theobene	Satyridae	P5	JZ/FS		330
15-juin	Bicyclus vulgaris	Satyridae	P1	JZ/J		331
15-juin	Bicyclus vulgaris	Satyridae	P1	JZ/J		332
15-juin	Bicyclus vulgaris	Satyridae	P2	JZ/J		333
15-juin	Ypthyma doleta	Satyridae	P2	JZ/J		334
15-juin	Bicyclus vulgaris	Satyridae	P2	JZ/J		335
15-juin	Bicyclus sp	Satyridae	P4	JZ/J		336

MOIS DE JUILLET

DATE	Noms Especes	famille	piège	biotopes	N°	-
12-jui	Bicyclus vulgaris	Satyridae	P2	JZ/J		337
12-jui	Bicyclus vulgaris	Satyridae	P2	JZ/J		338
12-jui	Bicyclus vulgaris	Satyridae	P2	JZ/J		339
12-jui	Bicyclus vulgaris	Satyridae	P3	JZ/J		340
12-jui	Bicyclus vulgaris	Satyridae	P2	JZ/J		341
12-jui	Bicyclus vulgaris	Satyridae	P1	JZ/J		342
12-jui	Bicyclus moyses	Satyridae	P2	JZ/J		343
12-jui	Bicyclus vulgaris	Satyridae	P3	JZ/J		344
13-jui	Bicyclus vulgaris	Satyridae	P2	JZ/J		345
13-jui	Bicyclus vulgaris	Satyridae	P2	JZ/J		346
13-jui	Bicyclus vulgaris	Satyridae	P2	JZ/J		347
13-jui	Bicyclus vulgaris	Satyridae	P6	JZ/FS		348
13-jui	Bicyclus vulgaris	Satyridae	P1	JZ/J		349
13-jui	Bicyclus moyses	Satyridae	P1	JZ/J		350
13-jui	Bicyclus moyses	Satyridae	P1	JZ/J		351
13-jui	Bicyclus vulgaris	Satyridae	P1	JZ/J		352
	Bicyclus vulgaris	Satyridae	P1	JZ/J		353
13-jui	Bicyclus moyses	Satyridae	P1	JZ/J		354
13-jui	Biclycus vulgaris	Satyridae	P1	JZ/J		355
13-jui	Gnophodes parmen	Satyridae	P1	JZ/J		356
13-jui	Bicyclus evadne	Satyridae	P1	JZ/J		357
13-jui	Bicyclus vulgaris	Satyridae	P1	JZ/J		358
13-jui	Bicyclus evadne	Satyridae	P1	JZ/J		359
13-jui	Cymothoe caenis	Nymphalidae	P1	JZ/J		360
13-jui	Bicyclus vulgaris	Satyridae	P1	JZ/J		361
	Bicyclus vulgaris	Satyridae	P1	JZ/J		362
13-jui	Yptima doleta	Satyridae	P2	JZ/J		363
	Cymothoe caenis	Nymphalidae	P2	JZ/J		364
	Cymothoe caenis	Nymphalidae	P1	JZ/J		365
13-jui	Bicyclus vulgaris	Satyridae	P2	JZ/J		366
	Bicyclus vulgaris	Satyridae	P2	JZ/J		367
	Bicyclus vulgaris	Satyridae	P1	JZ/J		368
	Harma theobene	Nymphalidae	P1	JZ/J		369
	1	Nymphalidae	P1	JZ/J		370
13-jui	charaxes cynthia	Nymphalidae	P3	JZ/J		371

13-juil charaxes numenes	Nymphalidae	P3	JZ/J	372	
13-juil Hypolinas dubius	Nymphalidae	P1	JZ/J	373	
13-juil Charaxes tiridetes	Nymphalidae	P2	JZ/J	374	
13-juil Bicyclus vulgaris	Satyridae	P2	JZ/J	375	
13-juil Bicyclus sophrosynes	Satyridae	P2	JZ/J	376	

MOIS D'AOUT

DATE	Noms Especes	famille	piège	biotopes	N°	
09-août	Harma theobene	Nymphalidae	P5	JZ/FS	1	376
09-août	Bicyclus technatis	Satyridae	P1	JZ/J		377
09-août	Bicyclus Sp	Satyridae	P1	JZ/J		378
09-août	Bicyclus moyses	Satyridae	P1	JZ/J		379
09-août	Bicyclus vulgaris	Satyridae	P1	JZ/J	1	380
09-août	Bicyclus dorothea	Satyridae	P1	JZ/J		381
09-août	Bicyclus vulgaris	Satyridae	P1	JZ/J	1	382
09-août	Bicyclus vulgaris	Satyridae	P1	JZ/J	1	383
09-août	Bicyclus moyses	Satyridae	P1	JZ/J	1	384
09-août	Bicyclus vulgaris	Satyridae	P1	JZ/J		385
09-août	Bicyclus vulgaris	Satyridae	P1	JZ/J	1	386
09-août	Bicyclus vulgaris	Satyridae	P1	JZ/J		387
09-août	Bicyclus moyses	Satyridae	P1	JZ/J		388
09-août	Ariadne enotrea	Nymphalidae	P3	JZ/J	1	389
09-août	Neptidopsis ophione		P3	JZ/J		390
	Bicyclus vulgaris	Satyridae	P3	JZ/J		391
	Bicyclus vulgaris	Satyridae	P3	JZ/J	1	392
	Neptidopsis ophione	,	P3	JZ/J		393
2 - 2 - 2 - 2 - 2	Neptidopsis ophione		P3	JZ/J	١.	394
	Bicyclus vulgaris	Satyridae	P3	JZ/J		395
	Bicyclus buea	Satyridae	P3	JZ/J	-	396
	Bicyclus vulgaris	Satyridae	P3	JZ/J		397
	Bicyclus moyses	Satyridae	P3	JZ/J		398
	Bicyclus vulgaris	Satyridae	P3	JZ/J		399
	Bicyclus moyses	Satyridae	P4	JZ/J		400
1	Bicyclus vulgaris	Satyridae	P2	JZ/J		401
	Bicyclus vulgaris	Satyridae	P4	JZ/FS		402
	Bicyclus vulgaris	Satyridae	P2	JZ/J		402
			P2			
	Bicyclus vulgaris	Satyridae		JZ/J		404
	Bicyclus vulgaris	Satyridae	P2	JZ/J		405
	Bicyclus smithi	Satyridae	P2	JZ/J		406
	Bicyclus vulgaris	Satyridae	P2	JZ/J	1	407
	Bicyclus vulgaris	Satyridae	P2	JZ/J	1	408
	Bicyclus vulgaris	Satyridae	P2	JZ/J		409
	Bicyclus vulgaris	Satyridae	P2	JZ/J	1	410
	Bicycus vulgaris	Satyridae	P2	JZ/J	l	411
	Bicyclus vulgaris	Satyridae	P2	JZ/J	1	412
	Neptidopsis ophione		P2	JZ/J		413
	Bicyclus vulgaris	Satyridae	P1	JZ/J		414
	Bicyclus vulgaris	Satyridae	P1	JZ/J		415
	Bicyclus vulgaris	Satyridae	P1	JZ/J		416
	Bicyclus vulgaris	Satyridae	P1	JZ/J		417
10-août	Cymothae caenis	Nymphalidae	P1	JZ/J		418
10-août	Bicyclus vulgaris	Satyridae	P1	JZ/J		419
10-août	Bicyclus vulgaris	Satyridae	P1	JZ/J		420
10-août	Bicyclus vulgaris	Satyridae	P1	JZ/J		421

10-août	Bicyclus vulgaris	Nymphalidae	P1	JZ/J	422	
10-août	Bicyclus vulgaris	Satyridae	P1	JZ/J	423	
10-août	Bicyclus vulgaris	Satyridae	P1	JZ/J	424	
10-août	Bicyclus vulgaris	Satyridae	P1	JZ/J	425	
10-août	Bicyclus vulgaris	Satyridae	P1	JZ/J	426	
10-août	Bicyclus vulgaris	Satyridae	P1	JZ/J	427	
10-août	Bicyclus swaedneri	Satyridae	P5	JZ/J	428	
10-août	Cymothae caenis	Nymphalidae	P5	JZ/J	429	
10-août	Cymothae caenis	Nymphalidae	P3	JZ/J	430	
10-août	Bicyclus vulgaris	Satyridae	P3	JZ/J	431	
10-août	Bicyclus vulgaris	Satyridae	P3	JZ/J	432	
10-août	Bicyclus smithi	Satyridae	P3	JZ/J	433	
10-août	Bicyclus vulgaris	Satyridae	P3	JZ/J	434	
10-août	Bicyclus vulgaris	Satyridae	P3	JZ/J	435	
10-août	Bicyclus vulgaris	Satyridae	P3	JZ/J	436	
10-août	Bicyclus moyses	Satyridae	P2	JZ/J	437	
	Ariadne enotrea	Nymphalidae	P2	JZ/J	438	
The second second second	Ariadne enotrea	Nymphalidae	P2	JZ/J	439	
	Bicyclus cottrelli	Satyridae	P2	JZ/J	440	
	Charaxes sp	Nymphalidae	P6	JZ/J	441	
	Charaxes guderiana		P2	JZ/J	442	
	Charaxes guderiana		P2	JZ/J	443	
	Charaxes cedreatis		P3	JZ/J	444	
10-août	Charaxes ameliae	Nymphalidae	P3	JZ/J	445	

I

I

MOIS DE SEPTEMBRE

	Espèces	Familles	Pièges	Biotopes	numeros
le06/sept	Bicyclus sanaos	Satyridae	P1	JZ/J	449
le06/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	450
le06/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	451
le06/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	452
le06/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	453
le06/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	454
le06/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	455
le06/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	456
le07/sept	Charexes numenes	Nymphalidae	P5	JZ/FS	457
le07/sept	Charexes smaragdalis	Nymphalidae	P2	JZ/J	458
le07/sept	Charexes zingha	Nymphalidae	P6	JZ//FS	459
le07/sept	Charexes tiridates	Nymphalidae	P5	JZ//FS	460
le07/sept	Charexes protecea	Nymphalidae	P2	JZ/J	461
le07/sept	Charexes boueti	Nymphalidae	P1	JZ/J	462
le07/sept	Harma theobene	Nymphalidae	P1	JZ/J	463
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	465
le07/sept	Bicyclus smithi	Satyridae	P3	JZ/J	466
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	467
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	468
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	469
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	470
le07/sept	Bicyclus smithi	Satyridae	P1	JZ/J	471
le07/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	472
le07/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	473
le07/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	474
le07/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	475
le07/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	476
le07/sept	Harma theobene	Nymphalidae	P1	JZ/J	477
le07/sept	Bicyclus saftiza	Satyridae	P1	JZ/J	478
le07/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	479
le07/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	480
le07/sept	Bicyclus vulgaris	Satyridae	P3	JZ/J	481
le07/sept	Gnophodes parmeno	Satyridae	P4	JZ/FS	482
le07/sept	Bebearia cottoni	Nymphalidae	P6	JZ/FS	483
le07/sept	Bicyclus dorothea	Satyridae	P2	JZ/J	484
le07/sept	Bicyclus vulgaris	Satyridae	P5	JZ/FS	485
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	486
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	487
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	488
le07/sept	Bicyclus vulgaris	Satyridae	P3	JZ/J	489
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	490
le07/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	491
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	492
le07/sept	Harma theobene	Satyridae	P5	JZ/FS	493
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	494

le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	495
le07/sept	Bicyclus vulgaris	Satyridae	P3	JZ/J	496
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	497
le07/sept	Bicyclus dorothea	Satyridae	P3	JZ/J	498
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	499
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	500
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	501
le07/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	502
le07/sept	Bicyclus vulgaris	Satyridae	P3	JZ/J	503
le07/sept	Neptis melicerta	Nymphalidae	P1	JZ/J	504
le07/sept	Harma theobene	Nymphalidae	P2	JZ/J	505
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	506
le07/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	507
le07/sept	Bicyclus vulgaris	Satyridae	P3	JZ/J	508
le07/sept	Bicyclus vulgaris	Satyridae	P3	JZ/J	509
le07/sept	Bicyclus dorothea	Satyridae	P3	JZ/J	510
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	511
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	512
le07/sept	Bicyclus vulgaris	Satyridae	P1	JZ/J	513
le07/sept	Bicyclus vulgaris	Satyridae	P2	JZ/J	514

MOIS D'OCTOBRE

DATE		Noms Especes	famille	piège	biotopes	
	04-oct	Cymothoe caenis	Nymphalidae	P2	JZ/J	515
	04-oct	Bicyclus vulgaris	Satyridae	P2	JZ/J	516
	04-oct	Cymothoe caenis	Nymphalidae	P4	JZ/FS	517
		Bicyclus sp	Satyridae	P4	JZ/FS	518
		Cymothoe caenis	Nymphalidae	P4	JZ/FS	519
		Eurytela hiarbas	Nymphalidae	P4	JZ/FS	520
		Charaxes protoclea	Nymphalidae	P5	JZ/FS	521
		Cymothoe caenis	Nymphalidae	P5	JZ/FS	522
		Cymothoe caenis	Nymphalidae	P5	JZ/FS	523
		Charaxes Sp	Nymphalidae	P5	JZ/FS	524
		Ariadne albifascia	Satyridae	P5	JZ/FS	525
		Harma theobene	Satyridae	P5	JZ/FS	526
		Bebearia cottoni	Nymphalidae	P6	JZ/FS	527
		Bicyclus vulgaris	Satyridae	P1	JZ/J	528
		Bicyclus vulgaris	Satyridae	P1	JZ/J	529
		Bicyclus smithi	Satyridae	P1	JZ/J	530
		Bicyclus vulgaris	Satyridae	P3	JZ/J	531
		Charaxes montis	Nymphalidae	P3	JZ/J	532
		Junonia terea	Nymphalidae	P3	JZ/J	533
		Cymothoe caenis	Nymphalidae	P3	JZ/J	534
		Bicyclus sp	Satyridae	P3	JZ/J	535
		Cymothoe caenis	Nymphalidae	P3	JZ/J	536
		Bicyclus vulgaris	Satyridae	P1	JZ/J	537
		Bicyclus vulgaris	Satyridae	P1	JZ/J	538
-		Bicyclus sp	Satyridae	P1	JZ/J	539
		Bicyclus vulgaris	Satyridae	P1	JZ/J	540
		Bicyclus vulgaris	Satyridae	P1	JZ/J	541
		Bicyclus vulgaris	Satyridae	P1	JZ/J	542
		Bicyclus moyses	Satyridae	P1	JZ/J	543
	04-oct	Bicyclus vulgaris	Satyridae	P1	JZ/J	544
		Charaxes numenes	Nymphalidae	P4	JZ/FS	545
		Cymothoe caenis	Nymphalidae	P1	JZ/J	546
		Bicyclus vulgaris	Satyridae	P1	JZ/J	547
		Bicyclus vulgaris	Satyridae	P5	JZ/FS	548
	04-oct	Charaxes tenidates	Nymphalidae	P6	JZ/FS	549
		Cymothoe caenis	Nymphalidae	P5	JZ/FS	550
	04-oct	Cymothoe caenis	Nymphalidae	P5	JZ/FS	551
	04-oct	Cymothoe caenis	Nymphalidae	P5	JZ/FS	552
	04-oct	Cymothoe caenis	Nymphalidae	P5	JZ/FS	553
	04-oct	Harma theobene	Nymphalidae	P6	JZ/FS	554
	04-oct	Bebearia cottoni	Nymphalidae	P6	JZ/FS	555
		Neptis melicerta	Nymphalidae	P6	JZ/FS	556
		Hypolycaena liara	Lycaenidae	P6	JZ/FS	557
		Bebearia mardania	Nymphalidae	P3	JZ/J	558
		Bicyclus vulgaris	Satyridae	P3	JZ/J	559
		Bicyclus vulgaris	Satyridae	P3	JZ/J	560
		Cymothoe caenis	Nymphalidae	P3	JZ/J	561
		Cymothoe caenis	Nymphalidae	P1	JZ/J	562
		Cymothoe caenis	Nymphalidae	P3	JZ/J	563
		Cymothoe caenis	Nymphalidae	P3	JZ/J	564
		Ariadne albifascia	Nymphalidae	P3	JZ/J	565
l,	U4-oct	Cymothoe caenis	Nymphalidae	P3	JZ/J	566

04-oct Bicyclus vulgaris	Satyridae	P3	JZ/J	567
04-oct Bicyclus dorothea	Satyridae	P1	JZ/J	568
04-oct Bicyclus vulgaris	Satyridae	P1	JZ/J	569
04-oct Bicyclus vulgaris	Satyridae	P1	JZ/J	570
04-oct Bicyclus smithi	Satyridae	P1	JZ/J	571
04-oct Bicyclus vulgaris	Satyridae	P1	JZ/J	572
04-oct Bicyclus vulgaris	Satyridae	P1	JZ/J	573
04-oct Bicyclus moyses	Satyridae	P1	JZ/J	574
04-oct Cynothae caenis	Nymphalidae	P1	JZ/J	575
04-oct Bicyclus moyses	Satyridae	P1	JZ/J	576
04-oct Bicyclus vulgaris	Satyridae	P1	JZ/J	577
04-oct Bicyclus vulgaris	Satyridae	P1	JZ/J	578
04-oct Cynothae caenis	Nymphalidae	P1	JZ/J	579
04-oct Bicyclus vulgaris	Satyridae	P2	JZ/J	580
04-oct Bicyclus moyses	Satyridae	P2	JZ/J	581
04-oct Cymothoe caenis	Nymphalidae	P2	JZ/J	582
04-oct Charaxes candiope	Nymphalidae	P3	JZ/J	583
04-oct Charaxes numeries	Nymphalidae	P3	JZ/J	584
04-oct Charaxes protoclea	Nymphalidae	P3	JZ/J	585
04-oct Charaxes imperialis	Nymphalidae	P3	JZ/J	586
04-oct Antanartia delius	Nymphalidae	P3	JZ/J	587
04-oct Charaxe lucretius	Nymphalidae	P2	JZ/J	588
04-oct Charaxes cynthia	Nymphalidae	P2	JZ/J	589
04-oct Charaxes lucretius	Nymphalidae	P2	JZ/J	590
04-oct Charaxes zingha	Nymphalidae	P2	JZ/FS	591
04-oct Cymothoe caenis	Nymphalidae	P4	JZ/FS	592
04-oct Cymothoe caenis	Nymphalidae	P4	JZ/FS	593
04-oct Bicyclus smithi	Satyridae	P4	JZ/FS	594
04-oct Cymothoe caenis	Nymphalidae	P4	JZ/J	595
04-oct Bicyclus vulgaris	Satyridae	P3	JZ/J	596
04-oct Bicyclus vulgaris	Satyridae	P1	JZ/J	597
04-oct Bicyclus vulgaris	Satyridae	P2	JZ/J	598
04-oct Cymothoe caenis	Nymphalidae	P4	JZ/FS	599
04-oct Cymothoe caenis	Nymphalidae	P5	JZ/FS	600
04-oct Bicyclus vulgaris	Satyridae	P2	JZ/J	601
04-oct Bicyclus vulgaris	Satyridae	P2	JZ/J	602
04-oct Cymothoe caenis	Nymphalidae	P3	JZ/J	603
04-oct Cymothoe caenis	Nymphalidae	P3	JZ/J	604
04-oct Cymothoe caenis	Nymphalidae	P2	JZ/J	605
04-oct Bicyclus vulgaris	Satyridae	P2	JZ/J	606
04-oct Bicyclus sp	Satyridae	P1	JZ/J	607
	4.8			

Ī