UNIVERSITE DE KISANGANI

FACULTE DES SCIENCES AGRONOMIQUES B. P. 2012 KISANGANI

DEPARTEMENT DE GESTION DES RESSOURCES NATURELLES

CONTRIBUTION A L'ETUDE DES RELATIONS ENTRE DIFFERENTS
PARAMETRES DENDROMETRIQUES DE Pycnanthus angolensis
(WELW) warb DANS LA RESERVE FORESTIERE DE MASAKO
(R.D.Congo)

Par

Childéric KAMBALE MUSUBAO

Mémoire

Présenté en vue de l'obtention de Grade d'ingénieur Agronome Option : Eaux et Forêts

Directeur: Dr. Ir. LOKOMBE DIMANDJA

Prof .Associé

Encadreur: Ir. MBAYU MPANYA

ANNEE ACADEMIQUE 2007-2008

DEDICACE

A mes très chers parents Etienne KULE SONGUBO et Élisabeth KAVIRA SYAIPUMA pour avoir fait de nous ce que nous sommes aujourd'hui et aux services consentis à notre éducation.

A mon épouse José ATALEMBELA LOKULA pour avoir accepter de passer ensemble ce moment des sacrifices, ou soutien moral et aux conseils.

A mon fils Digne SONGUBO MUSUBAO

Childéric KAMBALE MUSUBAO.

REMERCIEMENTS

Notre signe de gratitude s'adresse à l'Eternel Dieu de toute bienfaisance envers nous pour avoir permis la réalisation et finalisation de ce Travail.

Nous avons l'obligation d'exprimer notre profonde reconnaissance à tous ceux qui de près ou de loin ont contribué à la réalisation de ce Travail.

Nos sentiments de gratitude s'adressent plus particulièrement au Professeur Docteur Ingénieur LOKOMBE DIMANDJA, pour avoir accepté la direction de ce Travail malgré ses multiples occupations. Ses remarques et suggestions nous sont les bienvenus.

Nos reconnaissances s'adressent à l'Ir MBAYU MPANYA pour son encadrement et surtout sa disponibilité à notre égard.

Le même sentiment de gratitude s'adresse au C.E. SINDANI pour avoir accepté de nous accompagner en forêt pour la récolte de nos données.

Nous pensons également à toutes les autorités de la Faculté des Sciences Agronomiques (F.S.A) et surtout au Doyen MATE MWERU.

A mes frères et sœurs ; KULE SIRIWAYO, KATEMBO MUSUBAO, MBUSA SIRIWAYO, KAHINDO MUSUBAO, KAVIRA SIRIWAYO et KAVUO SIRIWAYO.

Nous pensons particulièrement à maman Monique SYAIPUMA, Rosalie SYAIPUMA, BOZOKO MATENDE et Victorine TOTELA

Nous pensons à notre Grand-mère Christine.

A mes Beaux frères et belles sœurs : BAKAFWELA, LIMBAYA, BAENDO, MANDEFU, LONZAKALA, LINDONDO, BAMBUNDO, KOMOY, LOKAMBA, MESALA, ELOMBO ASILI, MELAMBO, KASAMBIRE, KASAKA, VEPOPO, LOKINDA, BAHOMOLIA et BAMBILA.

A mes cousins et cousines : Philémon, LEVEKWA, Vianney, Léonie, Catherine, Christian SARAKWA, David WAMBALE, John WALAKA, Gentille etc.

Notre attention particulière va vers mon beau frère Ignace KAMBALE MALIKIDOGO pour son soutien moral et matériel.

Nous pensons également à l'Ir MBANDANO Papy pour avoir accepté le traitement de nos données.

Citez les uns n'est pas oublier les autres.

Childéric KAMBALE MUSUBAO.

LISTE DES TABLEAUX

Tableau 1: Moyennes mensuelles de température (°C) de précipitations (mm) et de l'humidité relative (%) de la région de Kisangani.

Tableau 2: Relations basses.

Tableau 3: Relations modérées

Tableau 4: Relations très forts $(R^2 = 0.80 \text{ à } 0.99)$

Tableau 5: Equations de régression pour les différents paramètres dendrométriques de *Pycnanthus angolensis*.

Tableau 6: Comparaison des relations des paramètres dendrométriques de *Pycnanthus angolensis* avec d'autres essences.

LISTE DES FIGURES

- Figure 1: La réserve forestière de MASAKO (0°36'N 25°13'E et 500 m d'altitude).
- Figure 2: Illustration des parcelles limitées.
- Figure 3: Distribution des fréquences des tiges par classe de (DHP.
- Figure 4: Distribution des fréquences des tiges par classe de Dfb.
- Figure 5: Distribution des frèquences des tiges par classe de hauteur fût (HF).
- Figure 6: Distribution des fréquences des tiges par classe de hauteur totale (HT).
- Figure 7: Distribution des fréquences des tiges par classe de hauteur houppier.
- Figure 8: Répartition de la surface terrière fût selon les classes diamétriques
- Figure 9: Répartition des volumes fût selon les classes diamétriques.
- Figure 10: Graphique de la regression quadratique entre DFB et DHP.
- Figure 11: Graphique de la regression quadratique entre VOL et DHP.
- Figure 12: Graphique de la regression quadratique entre ST et DFB
- Figure 13: Graphique de la regression quadratique entre VOL et DFB.
- Figure 14: Graphique de la regression de puissance entre HT et HF.
- Figure 15: Graphique de la regression quadratique entre ST et VOL.

LISTE DES ABREVIATIONS

a : Constante

b' : Coefficient de régression

DHP : Diamètre à hauteur de poitrine

Dfb : Diamètre fin bout

HF : Hauteur fût

HT : Hauteur totale

Hh : Hauteur houppier

LP : Layon principal

LA : Layon A

LB : Layon B

LC : Layon C

LD : Layon D'

P1 : Première parcelle

P2 : Deuxième parcelle

P3 : Troisième parcelle

P4 : Quatrième parcelle

P5 : Cinquième parcelle

P6 : Sixième parcelle

P7 : Septième parcelle

P8 : Huitième parcelle

R² : Coefficient de détermination

St : Surface terrière

VOL : Volume fût

CV : Coefficient de variation

Li : Forme dinéaire

Exp : Forme logarithmique

Log : Forme de logarithmique

PS : Forme de puissance

Inv : Forme inverse

Quad : Forme quadratique

Fig : Figure.

M : Mètre

Cm : Centimètre

Ha : Hectare.

LISTE DES ANNEXES

- ANNEXE 1 : Données du terrain : Liste de Pycnanthus angolensis inventoriés dans Huit parcelles.
- ANNEXE 2 : Calcul de surface terrière et du volume individuel.
- ANNEXE 3 : Distribution de fréquences des tiges par classe de DHP.
- ANNEXE 4 : Distribution des fréquences des tiges par classe de diamètre fin bout.
- ANNEXE 5 : Distribution des tiges par classe de hauteur Totale.
- ANNEXE 6 : Distribution des tiges par classe de hauteur fût.
- ANNEXE 7 : Distribution des fréquences des tiges par classe de hauteur houppier.
- ANNEXE 8 : Répartition de la surface terrière selon les classes diamétriques.
- ANNEXE 9 : Répartition des volumes fût selon les classes diamétriques.
- ANNEXE 10 : Relation entre les différents paramètres de Pyscanthus angolensis.

RESUME

Le présent travail vise à déterminer les relations entre différents paramètres dendrométriques de Pycnatuhus angolensis. Pour arriver aux objectifs nos échantillons ont été récoltés dans quatre hectares délimités dans la réserve forestière de MASAKO.

Après avoir effectué l'inventaire toutes les essences ayant un diamètre à hauteur de la poitrine supérieur ou égale à 10 cm ont été prises en compte.

Il s'est dégagé 123 pieds de Pycnanthus angolensis

- les relations très fortes sont signalées entre :
- Le diamètre fin bout et le diamètre à hauteur de la poitrine ;
- Le volume fût et le diamètre à hauteur de la poitrine ;
- La surface terrière et le diamètre fin bout ;
- Le volume fût et le diamètre fin bout ;
- La hauteur totale et la hauteur fût ;
- La surface terrière et le volume fût.

Les modèles de régression retenus sont celui du modèle de puissance. Les équations importantes sont :

- DFB= 0,9718+ 0,6599 DHP + 0,0002 DHP² ($\mathbb{R}^2 = 89,39\%$)
- VOL = 0,4291 + 4,1748 DHP + 17,9928 DHP² ($R^2 = 93,29\%$)
- ST = 0,0065 + 0,1285 DFB + 1,2538 DFB² ($R^2 = 88,48\%$)
- VOL = 0,3002 + 4,3436 DFB +32,8779 DFB² ($R^2 = 91,28\%$)
- HT = 1,9957 HF 0,8263 (R 2 = 86,83%)
- ST = $5,0629 + 3,6876 \text{ VOL} + 6,9131 \text{ VOL}^2 (R^2 = 97,39\%)$

Une brève recommandation pour les études antérieures a été établie.

ABSTRACT

The present investigation vised to determinate relation between differents dendrometrics parameters of Pycnnanthus angolensis specie.

Four ha were delimited to collecting our samples in MASAKO forest reserve, helping us to itend ours objectives. All trees who have a BH \geq 10 cm were selected in the sample; in it 123 trees of *Pycanthus angolensis* have found.

- The end thin diameters and the chest height's diameters;
- The trunk volume and the chest height's diameters;
- The soil surface and the end thin diameters;
- The trunk volume and the end thin diameters;
- The total height and trunk height;
- The soil surface and the trunk volume.

The quadratique regression model and power were holden. There are same important equations.

- DFB= $0.9718+ 0.6599 \text{ DHP} + 0.0002 \text{ DHP}^2 (R^2 = 89.39\%)$
- VOL = $0,4291 + 4,1748 \text{ DHP} + 17,9928 \text{ DHP}^2 (R^2 = 93,29\%)$
- ST = 0,0065 + 0,1285 DFB + 1,2538 DFB² (R² = 88,48%)
- VOL = 0,3002 + 4,3436 DFB +32,8779 DFB² ($R^2 = 91,28\%$)
- HT = $1,9957 + HF^{0,8263}$ ($R^2 = 86,83\%$)
- ST = $5,0629 + 3,6876 \text{ VOL} + 6,9131 \text{ VOL}^2 (R^2 = 97,39\%)$

A few recommendation destined to futures stadies was established.

0. INTRODUCTION

0.1. PROBLEMATIQUE

Les forêts en République Démocratique du Congo couvrent une superficie d'environ 1.280.000 km² représentant environ 54% de l'étendue nationale (WWW.Congo).

Les forêts Congolaises séquestrent le carbone et ralentissent le changement climatique dans les proportions d'envergure mondiale. Elles contribuent à réguler le régime hydrique de l'un des plus grands bassins versant du monde. La République Démocratique du Congo se classe au 5^{ème} rang mondial par la diversité des plantes et des animaux. Elle compte environ \$6.000.000 d'hectares des forêts denses, dont environ 60.000.000 d'hectares seraient en théorie aptes à la production des bois d'œuvre(MECNF), 1977; FAO, 1982; FAO, 2001; CROIZER et al, 2007).

La forêt tropicale est apparue longtemps comme une réserve des bois d'œuvre ou de service, dont les produits sont souvent exploités pour des usages dans des pays industrialisés (CLEMENT et STRASFOGEL 1986) dont la connaissance s'avère importante. Pour les connaître il faut passer par les inventaires, les études dendrométriques, le cubage, les relations entre les paramètres.

Pour leurs caractéristiques, les forêts tropicales présentent une densité très élevées, des arbustes, des sous arbustes, des lianes (LEJOLY, 2008) ne permettent pas la facilité aux mesures dendrométriques. Par cette étude, nous cherchons à trouver un moyen par lequel on peut facilement accéder à un seul (soit le DHP ou autre).

Pour y arriver, les modèles de régression statistiques pourraient être des outils indispensables pour les relations entre paramètres.

0.2. HYPOTHESE

Pour bien mener notre étude, nous proposons les hypothèses suivantes :

- dans la plupart des paramètres, le modèle de régression inverse serait faible.
- Le modèle de régression quadratique ou de puissance, présenterai une bonne relation entre les paramètres dendrométriques.

0.3. OBJECTIFS DU TRAVAIL

0.3.1. OBJECTIF GENERAL

L'objectif général poursuivi dans cette étude est de contribué à l'étude des relations entre les paramètres dendrométriques de *Pycnanthus angolensis*.

0.3.2. OBJECTIF SPECIFIQUE.

- Inventorier tous les *Pycnanthus angolensis* ayant un DHP ≥ 10 Cm;
- Mesurer les paramètres dendrométriques sur chaque pieds ;
- Etablir les relations par les méthodes statistiques de régression.

O.4. BUT DE L'ETUDE

Le but poursuivi dans cette étude est de vérifier le lien entre les différents paramètres dendrométriques de Pycnanthus angolensis; nécessaires pour déduire d'autres paramètres parfois inaccessibles dans nos forêts (diamètre fin bout, hauteur fût, hauteur total, hauteur houppier).

0.5. INTERET DE L'ETUDE

L'intérêt de l'étude est d'abord scientifique, car ce travail servira de guide aux chercheurs qui embrasseront ce domaine, pour arriver à l'établissement des relations entre les paramètres dendrométriques. La connaissance de ces relations permettra aux exploitants forestiers, aux industriels, aux gestionnaires, aux aménagistes et aux sylviculteurs de bien gérer ce patrimoine national qui est une ressource naturelle renouvelable pour un développement économique, social, écologique et culturel du pays.

0.6. SUBDIVISION DU TRAVAIL

Ce travail comporte 3 chapitres hormis l'introduction et la conclusion; le premier traite de généralités, le second abordera les matériels et méthodes, le troisième est la réservé à la présentation des résultats et la discussion. Enfin une conclusion et quelques recommandations mettront fin à ce travail.

Chapitre Premier GENERALITES

1.1. MILIEU D'ETUDE

1.1.1. Situation géographique

La Réserve de MASAKO, est située à 14 km au Nord-est de la ville de Kisangani, sur l'ancienne route BUTA. Elle a une superficie de 2.105 Hectares et est entièrement comprise dans une grande boucle de la rivière Tshopo (DUDU, 1991; SOKI, 1994; UPOKI, 1994; JUAKALY, 2002; MUKINZI et al, 2005).

En effet, la Réserve de MASAKO se trouve dans la collectivité de LUBUYA-BERA, Commune Tshopo, Ville de Kisangani.

Ses coordonnées géographiques sont respectivement 0° 36N et 25° 13'E avec une altitude moyenne de 500m (DUDU, 1991, UPOKI, 2001).

Kisangani, la ville la plus proche de la Réserve de MASAKO, est située au nord-est de la République Démocratique du Congo, à cheval sur le Fleuve Congo. Elle est située dans la région forestière du rebord Orientale de la cuvette centrale Congolaise et entièrement comprise dans la zone Bio climatique de la forêt dense humide équatoriale (Lejoly et Lysowski, 1978, Lejoly et al, 1988 a., Lejoly et al 1988 b).

1.1.2. Historique de la Réserve.

« Il s'ensuit que dans un rayon d'environ 50 Km de la ville, seules subsistent, les forêts marécageuses, impropres aux cultures. Le danger avait été ressenti au début des années 1920 et a conduit à la création des zones protégées telle que la Réserve de MASAKO » (SOKI, 1994). Cette dernière était une propriété du Département des Affaires Foncières. Environnement et Conservation de la Nature, et a été créée par l'Ordonnance loi n° 521373 du 12 novembre 1953 (MAMBANGULA, 1988).

1.1.3. Climat.

MASAKO et ses environs jouissent globalement du climat de Kisangani, notamment quelques petites modifications liées au couvert végétal de la réserve et à son hydrographie qui est assez dense. Kisangani est comprise dans la zone bioclimatique de la forêt dense ombrophile sempervirente équatoriale.

in Juakaly (2007) cette zone Selon Goffaux (1990) type « Afi» de climat de caractérisée par un cette Dans classification «A» Köppen. classification de désigne un climat chaud avec les douze moyennes mensuelles égales à 18°C. « j » le climat humide dont la pluviosité est répartie sur toute l'année, c'est-à-dire sans saison sèche absolue et dont la hauteur mensuelle des pluies du mois le plus sec est supérieure à 60mm; et « i » signale une très faible amplitude thermique.

En vue de visualiser les tendances saisonnières à Kisangani, nous donnons dans le Tableau(1) les données

climatiques disponibles de vingt quatre années récentes de la région de Kisangani (SOKI, 1994 et UPOKI, 2001).

Tableau (1) : Moyennes mensuelles de température (°C) de précipitations (mm) et de l'humidité relative (%) de la région de Kisangani.

Paramètre	Janv	Févr	Mars	Avr	Mai	Juin	juil	Août	Sept	Oct	Nov	Déc	Année
Tm	24,4	25,1	25,3	25,1	24,7	24,3	23,7	23,5	24,8	24,3	24,3	24,5	24,4
HRm	81,7	79,1	84,0	83,1	84,3	85,6	87,3	86,4	85,0	84,7	85,2	84,3	84,2
PPm	69,5	99,9	144,3	171,3	178,7	128,8	95,9	130,4	204,1	237,4	216,2	106,2	1782,7
Total PPm	275,6		494,3		-	355,2			657,6	 		 	
			S2	<u> </u>	-	S3	-	 	S4	<u> </u>		S1	
Saison	S1		32			00			<u></u>				

Source : Juakaly, (2007).

Légende : Tm : Température moyenne mensuelle

HRm : humidité relative mensuelle

PPm : Précipitation moyenne mensuelle.

S1, S2, S3, S4: Saison.

Ce tableau (1) révèle que:

- La température moyenne varie entre 25,3°C en Mars et 23,5°C en Août avec une moyenne annuelle de 24,4°C,
- L'humidité relative de l'air varie entre 79,1% en Février et 87,3% en Juillet avec une moyenne annuelle de 84,2%,
- Les précipitations sont abondantes toute l'année avec une hauteur annuelle de 1782,7 mm; on observe un déficit pluviométrique (Valeursminimales) en Janvier (69,5 mm) et Juillet (95,9mm) périodes qui correspondent aux saisons subsèches de notre région.

- Les maxima sont constatés en Mai (178,7 mm) et en Octobre (237,4 mm) mais qui correspondent aux périodes des grandes pluies à Kisangani.

1.1.4. Sol

Le sol de la réserve floristique de MASAKO est du type ferralitique désaturé et appauvris comme la plus part de sols des régions tropicales. Ces sols formés sans foret dense ombrophile, sont très profonds.(MAKANA, 1986).

1.1.5. Relief et Géologie

La région étudiée appartient à la zone des plateaux qui ceinture la cuvette dont elle est située sur le bord oriental (GERMAIN et EVRARD ,1956).

1.1.6. Hydrographie

L'hydrographie de la région de MASAKO est dominée par une seule grande rivière, la TSHOPO et la présence des 13 ruisseaux qui s'y déversent tous .Parmi eux nous pouvons citer AMAKASAMPOKO et MASANGA-MABE à droite de la piste principale, tandis qu'à gauche nous avons, MAGIMA, AMANGDE et MASAKO qui a donné son nom à la réserve (JUAKALY, 2007).

1 .1.7. Végétation

La végétation de la réserve de MASAKO est constituée d'une forêt primaire, des forêts secondaires, d'une forêt marécageuse et des jachères le tout s'étendant sur une superficie de 2150ha.

1.1.8. Population

La région de MASAKO est occupée par une population hétérogène de plusieurs tribus, les MBA, KUMU et BALI .Ce sont les MBA qui dominent, les KUMU et BALI ont une faible représentation (LOTIKA, 2007).

La réserve forestière de MASAKO estreprésentée par la carte ci-dessous :

CARTE DE LA RESERVE FORESTIERE DE MASAKO

Stratification de l'occupation de sol - Réserve de MASAKO

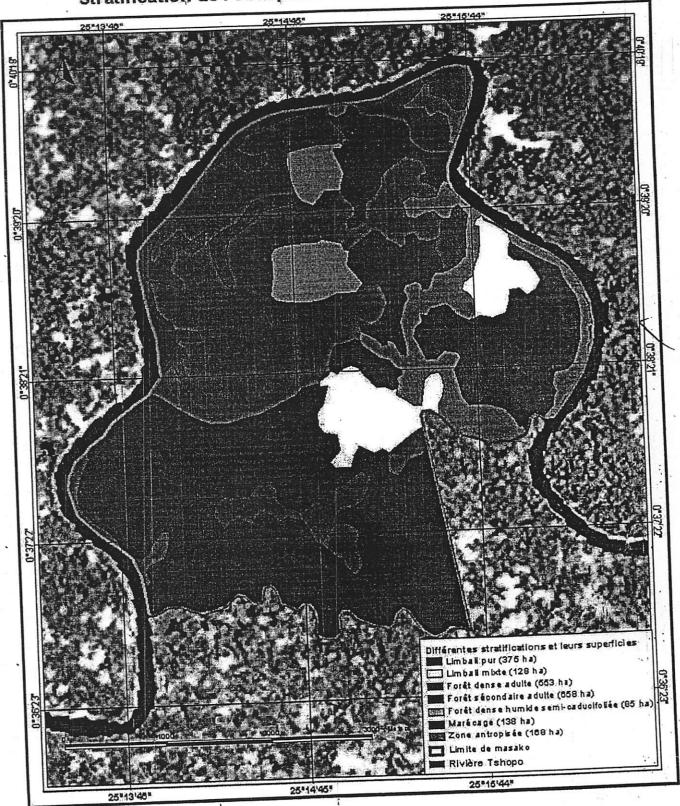


Fig 1 : la Réserve Forestière de Masako (0°36'N 25°13'E et 500m d'altitude)
Source : Adaptation de la carte de DUDU (1991)

1.2. DESCRIPTION GENERALE DU PYCNANTHUS ANGOLENSIS

1.2.1. Identité

Le Pycnanthus angolensis WelW Warb appartient à la famille des Myristicadege à l'odre de Magnoliales, sous-classe de Magnoliidae, classe de Magnoliopsida, sous embanchement de Magnoliophytina (Angiospermes) et embanchement de Magnoliophyta (Spermaphytes).

Son nom commercial est Ilomba.

1.2.2. Aire de distribution

Le *Pycnanthus angolensis* est réparti géographiquement en Afrique tropicale de la casamance à l'Angola et à l'Ouganda.

1.2.3. Dénomination

- Congo : Ilomba ;
- Côte-d'Ivoire : Walele ;
- Gabon : Eteng, nkoma ;
- Nigeria : Akomu, umoghan ;
- RCA : Gele.

1.2.4. Description dendrologique

- Base : légèrement épaissie (rarement empattement) ;
- Fût : droit et cylindrique : longueur de 25 m et le diamètre de 1,6 m ;
- Houppier : branches étagées, horizontales vers le bas de la cime dressé obliquement vers le haut de la cime ;

- Ecorce: brun grisâtre (1-3 cm), lisse, s'exfoliant en lamelles minces chez les vieux sujets; tranche granuleuse rouge à l'extérieur, fibreuse rosâtre à l'intérieur, fonçant à l'air, exsudant un liquide jaune rosé devenant rougeâtre, très fluide et ne se solidifiant pas.
- Aubier : non différencié ;
- Bois : Blanc ou légèrement rosé virant à l'orange ;
- Feuilles : persistantes, alternes, simples à 20-40 paires de nervures latérales saillantes en dessous à limbe ferrugineux dessous, souvent perforé par les insectes; jeunes feuilles très pubescentes.
- Fruits : drupes oblongues, orangées, s'ouvrant en 2 values.
- Graine : 1 par noyau, violacée entourée d'un arille rouge découpé (VIVIEN, ET FAURE, 1985).

1.2.5. Anatomie

a. Vaisseaux

Bois à pores disséminés. Disposition des vaisseaux accolements radiaux de 2-3. Diamètre tangentiel des vaisseaux: 150-220-320 micromètre. Nombre moyen vaisseaux par mm²: 1-3-(longueur moyenne des éléments de vaisseaux: 600-1200 micromètre. Perforations simples ou scariformes (rares). Ponctuations inter vasculaires en quinquonce, diamètre moyen (verticale) des ponctuations inter vasculaires: 9-12 micromètre. Ponctuations radiovasculaires étroitement aréolées apparemment simples,

étirées horizontalement ou verticalement. Epaississements spiralés absents. Thylles présents, de parois minces.

b. Trachéides et fibres

Fibres de parois d'épaisseur moyenne. Longueur moyenne des fibres: 1200-1700-2300 micromètre. Ponctuations des fibres généralement sur les parois radiales, ponctuation des fibres simples ou étroitement aréolées. Fibres exclusivement non cloisonnées. Fibres alignées radialement.

c. Parenchyme

Parenchyme axial présent, non en lignes, parenchyme axial paratrachéal. Parenchyme paratrachéal juxtavasculaire. Cellules de parenchyme axial en files. Nombre moyen de cellules de parenchyme axial par file : 10.

d. Rayons

Nombre de Yayons par mm: 4-10, Yayons multiseriés (même si seulement sporadiques), rayons 1-3 sériés. Rayons composés de deux types de cellules ou plus de cellules ou plus (hétérocellulaires) rayons hétérocellulaires avec cellules carrées et dressées seulement dans les rangées terminales généralement avec 1 rangée terminale des cellules carrées ou dressées.

Structure étagée absente, cellules à huile ou mucilage absentes, canaux intercellulaires absents. Tissues laticifères ou tubes à tanins absents.

Phloème et autres variations cambiales, liber inclus absente .Dépôts minérales, cristaux absents ; silice non observée.

e. Propriétés physiques et mécaniques

Les Pycnanthus angolensis est un bois très tendre, moyennement nerveux. La rétractibilité de cette espèce est difficile à définir : en effet au retrait normale vient s'ajouter le phénomène du « collapse » fréquent.

Il est peu résistant au choc.

f. Utilisations

Il est utilisé dans l'industrie de contreplaqué, emballage; scie: baquettes, plinthes, moulure; bois fendu à la hache et au coin, débité en planches assez grossière appelés carbottes. Ecorce utilisé comme vomitif. Graines oléagineuses donnant un suif végétal. (VIVIEN. 3 et FAURE, 3, 5 op cit).

1.3. TRAVAUX ANTERIEURS

La littérature sur la relation entre les paramètres dendrométriques est encore préliminaire, du moins celle qui aborde les aspects dendrométriques et le calcul de tarif de cubage sont suffisamment avancées.

Parmi ces travaux nous citons : MBIKAYI en 2007 qui étudié les relations entre différents paramètres dendrométriques de Scordophloens zenkeri à Yangambi et les modèles de régression retenus sont linéaire, logarithmique et exponentielle; BIGUMA en 2006 contribue à l'élaboration d'un tarif de cubage de staudia stipitata (S.Kamerunsis) warb dans la réserve floristique de LOWEO (YANGAMBI) et a retenu le modèle de régression puissance comme meilleur ; KAHINDO en 2006 contribue à l'élaboration de tarif de cubage de Funtumia africana (Berath) stapf dans la réserve forestière de YOKO Bloc Nord (UBUNDU, Province Orientale RDC); le meilleur modèle retenu est celui d'exponentielle ; YUMA en 2007 Analyse les caractères dendrométriques de la forêt marécageuse dans la réserve forestière de MASAKO (Province Orientale, RD. Congo), le modèle de puissance est considéré comme meilleur ; LOKOMBE 19996, fait l'étude dendrométrique de la Gilbertiodendron dewevrei dans la collectivité de BAMANGA. LOKOMBE en 2004 étudié les caractéristiques dendrométriques et stratégies d'aménagement de la forêt dense humide Gilbertiolendron dewevrei en région de BENGAMISA.

Chapitre deuxième MATERIELS ET METHODES

2.1. Matériels

Deux types de matériels nous ont servi pour l'exécution des travaux sur le terrain : le matériel biologique et le matériel technique.

2.1.1. Matériel biologique.

Le matériel biologique utilisé dans la réalisation de ce travail dans la forêt de Masako est le Pycnanthus angolensis ayant un diamètre à hauteur de poitrine supérieur ou égal à 10cm (DHP=10cm) ont été retenues.

2.1.2. Matériel technique.

Pour la récolte des données nécessaires à la réalisation de notre travail, nous nous sommes servis de matériels ou instruments suivants :

- -Une boussole pour l'orientation des layons de base ;
- -Deux relascopes de Bitterlich à bandes étroites et à Bandes larges pour la mesure de diamètre à hauteur de poitrine(DHP) ; la hauteur ainsi que la distance Horizontale ;
- -un GPS servant àla prise des coordonnées Géographiques du site ;
- -deux galons circonférentiels de 10m et de 50m pour Mesurer la distance horizontale ;
- -une perche de 1,30m pour matérialiser, sur chaque Pied le niveau de DHP ;

-deux machettes pour couper et nettoyer les basesdes essences et ouvrir les layons ;-un manuel de dendrologie pour identification des

espèces.

2.2. Méthode de travail

La méthodologie de ce travail porte sur la délimitation des parcelles, le dénombrement, la mensuration, le choix de l'échantillon des parcelles et la compilation des données.

2.2.1. Délimitation des parcelles

Après la localisation de la zone expérimentale dans la réserve, nous avons procédé à la délimitation des parcelles 200 m x 25 m soit 0,5 hectare. Huit parcelles ont été délimitées et la superficie totale de 4 hectares.

2.2.2. Dénombrement et résumer métrique

2.2.2.1. Dénombrement

Un inventaire de l'espèce *Pycnathus angolensis* ayant un diamètre à hauteur de poitrine supérieur ou égale à 10 cm (DHP ≥ 10 cm) a été effectué.

2.2.1.2. Mensuration dendrométrique

Les instruments dendrométriques nous ont servi pour mesurer tous les arbres retenus sur les paramètres ciaprès :

- le diamètre fin bout ;

- le diamètre à hauteur de la poitrine ;
- la hauteur fût ;
- la hauteur totale.

La figure 2 illustre la manière dont les parcelles ont été limitées.

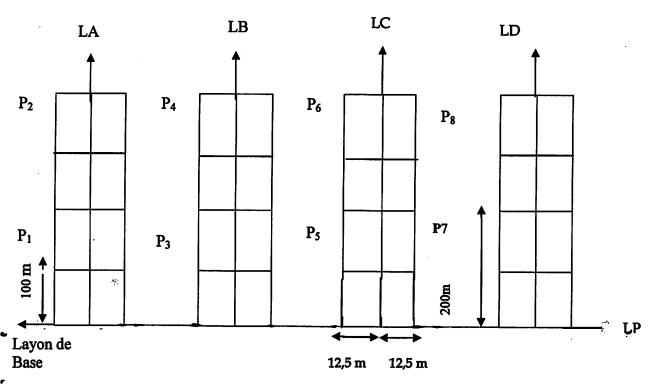


Fig 2. Illustration des parcelles limitées.

Légende :

L A: Layon A

L C: Layon C

L P: Layon principal

L B: Layon B

L D: Layon D.

P₁: Première parcelle

P₂: Deuxième parcelle

P₃: Troisième parcelle

P4 : Quatrième parcelle

P₅: Cinquième parcelle

P₆ : Sixième parcelle

P₇ : Septième parcelle

P₈: Huitième parcelle.

2.2.3. Choix de l'échantillon

La présente étude consiste à l'étude des relations entre les différents paramètres dendrométriques de Pycnathus anglolensis, l'échantillon porte exclusivement sur cet arbre.

2.2.4. Compilation des données

La compilation des données consiste à transformer les mesures brutes prises à l'aide de relascope de Bitterlich.

La conversion se fait par les relations dendrométriques ci-après :

1. Diamètre à hauteur de poitrine (DHP)

d = 2 u a

Où d = diamètre à hauteur de poitrine (en cm)

u = nombre d'unités relascopiques

a = distance horizontale (en cm) séparant l'opérateur de l'arbre.

2. Hauteur totale (Ht)

HT = Ls - Li

Où HT = hauteur totale (en m)

Ls = lecture du point supérieur.

Li = lecture du point inférieur.

3. Hauteur houppier (Hh)

$$Hh = HT - Hf$$

Où HT = Hauteur totale (en m)

Hf = Hauteur fût (en m)

Les données compilées se trouvent en annexe 1

4. La surface terrière

$$ST = (DHP) 2 \frac{\pi}{4} \quad où \quad \pi = 3,14$$

ST = Surface terrière (en m² / ha)
DHP = diamètre à hauteur de poitrine
(en cm).

5. Volume fût

Formule de SMALIAN

$$V = \underline{L}_{4\pi} = (\underline{D^2 + D^2})$$

Où $D_1 = Diamètre$

 D_2 = Diamètre fin bout

L = Longueur du fût.

2.2.5. Autres formules statistiques utilisées

- Nombre des classes (k)

Formule de sturge : $k = 1 + 3,3 \log N$

où k : est le nombre des classes

N : est le nombre total d'individus

- Intervalle de classe (I)

$$I = \frac{V \max - V \min}{k} = \frac{LS - Li}{k}$$

où V max : est la valeur maximale

V min : est la valeur minimale

Ls : est la limite supérieure

Li : est la limite inférieure

- Coefficient de variation (C.v)

$$Cv = \sigma X 100 Où \sigma = est l'écart-type x = est la moyenne$$

2.2.7. Etude des relations entre différents paramètres dendrométriques

Six modèles de régression ont servi à l'étude de différentes relations dendrométriques de notre échantillon.

Pour ce qui nous concerne, nous avons retenus six formes de régression :

- 1° le modèle linéaire y= a + bx ;
- 2° le modèle logarithmique y = a + blnx ;
- 3° le modèle de puissance $y = a x^{b}$;
- 4° le modèle exponentiel $y = a e^{bx}$
- 5° le modèle inverse y = a + b.1; et

x

 6° le modèle quadratique y = a + b+ cx^2

Ces équations permettent d'établir le degré de liaison qui existe entre les différents paramètres dendrométriques de *Pycnathus anglolensis*.

2.2.8. Traitement des données

Les logiciels Curve Expert 1.3 et SPSS ont permis de traiter nos données pour l'obtention des équations de régressions.

Chapitre Troisième RESULTAS ET DISCUSSION

3.1. RESULTATS

3.1.1. DENSITE DU PEUPLEMENT

La densité est une expression désignant le nombre d'effectif par unité de surface. L'effectif d'individus d'un peuplement donne une idée de la densité de la communauté de la population mais ne renseigne pas sur le mode d'occupation et leur taille, (LOKOMBE, 1996 in MBAYU, 2006).

Le Pycnanthus angolensis présente une densité de 123 pieds/ 4 hectares soit 30,75 pieds/hectare.

3.1.2. DIAMETRE

3.1.2.1. Diamètre à hauteur de poitrine

La hauteur de poitrine (DHP) est le paramètre le plus utilise dans les inventaires des forêts tropicales. On l'appelle également diamètre de référence est alors mesuré à 1,30 m du sol pour les arbres sans contrefort ou racines aériennes inferieurs à 1 m de haut.

La figure 3 et l'annexe 3 donnent la répartition des tiges en classes de (DHP).

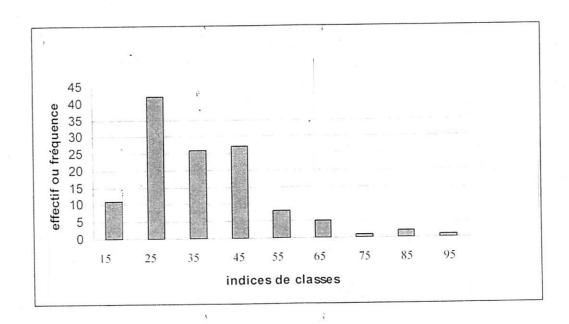


Fig2. Distribution des fréquences des tiges par classes de DHP.

Les graphiques des fréquences des tiges par classe de DHP en fonction de fréquence observée est représentée par la courbe en forme de cloche. Le Pic est signalé dans l'indice de classe 25 et les plus réduits sont observées dans les cinq derniers indices de classes 55, 65, 75, 85 et 95. La moyenne est de 34,5 cm.

3.1.2.2. Diamètre fin bout (Dfb).

La figure 4 et l'annexe 3 donnent la répartition des fréquences des tiges par classes de diamètre fin bout.

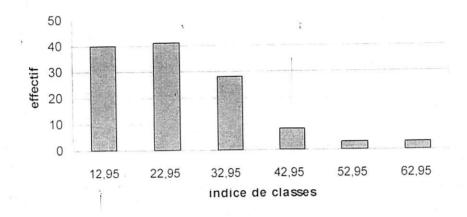


Fig 4.Distribution des fréquences de tiges par classe de Dfb.

La distribution des tiges par catégories de diamètre fin bout est présentée sous la forme de courbe en cloche. Le pic s'observe dans l'indice de classe 22,95 et les trois derniers indices de classes 42,95 ; 52,95 ; 62,95 sont les plus réduits.

La moyenne des individus selon les classes de diamètres fin bout est de 23,87 cm.

3.1.3. Hauteur

3.1.3.1 Hauteur fût

La hauteur fût est la partie de la tige située entre la souche et la base de la cime.

La figure 5 et l'annexe 5 montrent la répartition des fréquences des tiges en fonction de la hauteur fût.

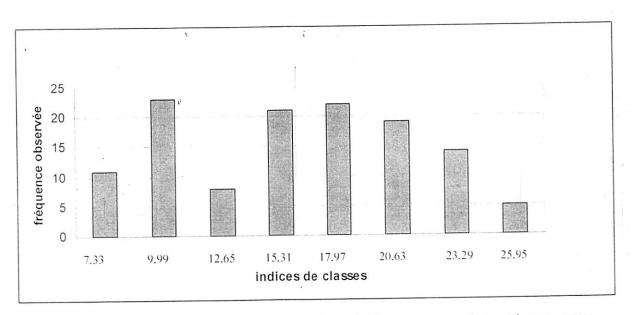


Fig 5. Distribution des fréquences des tiges par classes de hauteur fût (H F).

Le graphique des fréquences des tiges par classe de hauteur fût montre une courbe en forme de GAUSS. On signale le pic dans l'indice de classe de 9,99 et l'indice de classe le plus réduit s'observe à 25,95. La moyenne est de 15,97 m

3.1.3.2. Hauteur totale (HT)

La hauteur totale indique le stade de développement de chaque type de forêt (MBIKAYI, 2007).

La figure 6 et l'annexe 4 montrent la répartition des fréquences des tiges en fonction de la hauteur totale.

Fig.6 distribution des fréquences des tiges par classe de hauteur totale.

La distribution des fréquences des tiges par catégories de hauteur totale est représentée sous forme de courbe de GAUSS. Le pic de cette courbe s'observe dans l'indice de classe 20,97et deux dépressions dans les indices de classes 15,65 et 23,63.

La moyenne est de 19,63m.

3.1.3.2. Hauteur houppier (Hh)

Le houppier est la partie de la tige située au dessus de la base de la cime et branches insérées au dessus de la base de la cime.

La figure 7 et l'annexe 6 présentent la distribution des fréquences des tiges par classes de hauteur houppier.

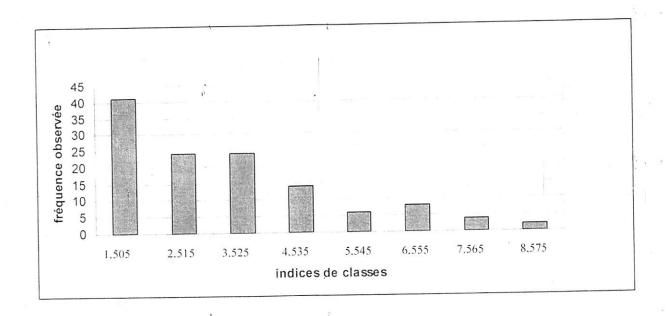


Fig 7. Distribution des fréquences des tiges par classe de hauteur houppier.

Le graphique de distribution des fréquences par classe de hauteur houppier est représenté sous forme de courbe en i. Le pic de la courbe est signale dans l'indice de classe 1,505 et réduit dans les indices de classes 7,565 et 8,575. On remarque également un déficit au niveau de l'indice de classe 5,545. La moyenne est de 3,75m.

3.1.4. Surface terrière

La surface terrière ou aire basale se définit comme étant la mesure exprimééen m²/ha de la surface totale de section a 1,30 m du sol de toutes les tiges et troncs, rencontrée en forêt, dans une placette de superficie, déterminée.

La figure 8 et l'annexe 7 présentent la surface terrière de *Pycnanthus angolensis* repartie dans les différentes classes de DHP.

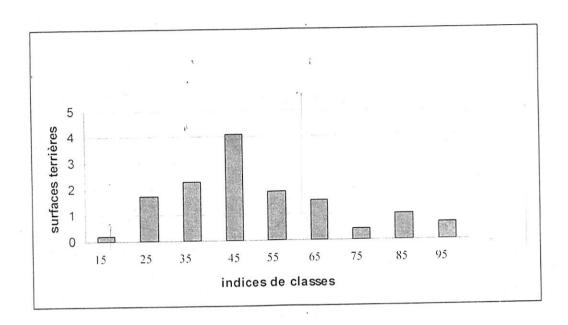


Fig 8. Répartition de la surface terrière selon les classes diamétriques.

Le graphique de la répartition de la surface terrière selon les classes diamétriques se présente sous forme de courbe de GAUSS. Le pic s'observe dans l'indice de classe 45 et un déficit dans l'indice de classe 75. La moyenne de la surface terrière est de 11,49m²/ha.

3.1.5. VOLUME FUT

Un arbre étant un objet physique complexe, il s'agit de bien 'identifier et définir la partie de cet Object (ou compartiment) dont on veut estimer la place qu'elle occupe dans l'espace à trois dimensions, autrement dit; le volume.

La figure 9 et l'annexe 8 donnent la repartions des fréquences des tiges en fonction de volume fût par classe de DHP.

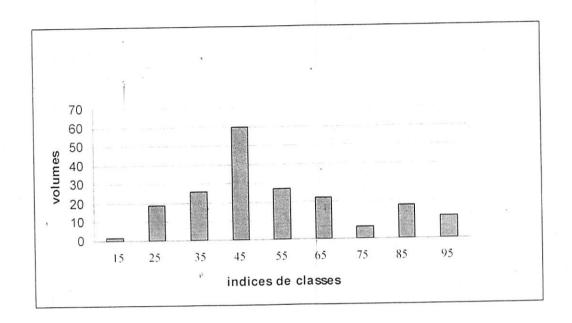


Fig 9. Répartition des volumes selon les classes diamétriques.

Le graphique des volumes selon les classes diamétriques est représenté sous forme de courbe de GAUSS ou
en cloche. Le pic s'observe dans l'indice de classe 45 et
un déficit dans l'indice de classe 75.
La moyenne du volume fût est de 1,55m³.

3.1.4. RELATION ENTRE DIFFÉRENTS PARAMÈTRES DENDROMÉTRIQUES

L'annexe 10 présente 30 relations pour les sept paramètres dendrométriques (DHP, DFB, HF, HT, Hh, ST et VOL)

3.1.4.1. Relation basses

Le tableau 2 reprend les relations de différents paramètres ayant un coefficient de détermination inférieur à 0,5.

Tableau 2: Relations basses

Relation	Coefficient de détermination
1. DHP et HF	0,31515
2. HF et DHP	0,31515
3. HT et DHP	0,3024
4. DHP et HT	0,3024
5. DHP et Hh	0,01405
6. Hh et DHP	0,0148
7. DFP et HF	0,3018
8. HT et DFB	0,3009
9. DFB et HT	0,3009
10. DFB et Hh	0,0167
11. Hh et DFB	0,0299
12. HF et DFB	0,3052
13. DFB et Hh	0,1672
14. HT et ST	0,30928
15. ST et HF	0,31515
16. ST et HT	0,3093
	1

3.1.4.2. Relations modérées

Le tableau 3 présente les différentes relations modérées entre les paramètres ayant un coefficient de détermination ($R^2=0,50$ à 0,60).

Tableau 3 : Relation modérées

Relation	Coefficient de détermination
1. VOL et HF	0,5936
2. HF et VOL	0,5936
3. VOL et HT	0,5560

3.1.6.3. Relations très fortes

Les relations qualifiées comme très fortes sont présentés dans le tableau 4.

Tableau 4: Relations très fortes $(R^2 = 0.80 \text{ à } 0.99)$.

Relation	Coefficient de détermination
DFB et DHP	0,89391
DHP et DFB	0,89397
VOL et DHP	0,93287
DHP et VOL	0,90944
DFB et ST	0,88542
ST et DFB	0,88476
DFB et DVOL	0,89346
VOL et DFB	0,91277
HF et HT	0,86829
HT et HF	0,86229
ST et VOL.	0,97488.

3.1.₹. EQUATION DE REGRESSION

Les équations de régression retenues sont présentées dans le tableau 5 et les figures 10 - 15.

Tableau 5 : Equations de régression pour les différents paramètres dendrométriques de Pycnathus anglolensis.

Relation	Equations
1. DFB et DHP	$DFB = 0,9718 + 0,6599 DHP + 0,0002 DHP^2 (R^2 = 0,8939)$
2. VOL et DHP	$VOL = 0,4291 + 4,1748 DHP + 17,9928 DHP^2 (R^2 = 0,9329)$
3. ST et DFB	$ST = 0.0065 + 0.1285 DFB + 1.2538 DFB^2 (R^2 = 0.8848)$
4. VOL et DFB	$VOL = 0,3002 + 4,3436 DFB + 32,8779 DFB^2 (R^2 = 0,9128)$
5. HT et HF	$HT = 1,9957 ext{ HF}^{0,8263} ext{ (R}^2 = 0,8683)$
6. ST et VOL	$ST = 5,0629 + 3,6876 \text{ VOL} + 6,9131 \text{ VOL}^2 (R^2 = 0,9739)$

Les figures ci-dessous (10 à 15) reprennent les graphiques des équations de régression retenues, pour les relations entre les paramètres suivants : DFB et DHP, VOL et DHP, ST et DFB, VOL et DFB, HT et HF, ST et VOL.

La figure 10 montre la présentation de l'équation quadratique pour la relation entre DFB et DHP.

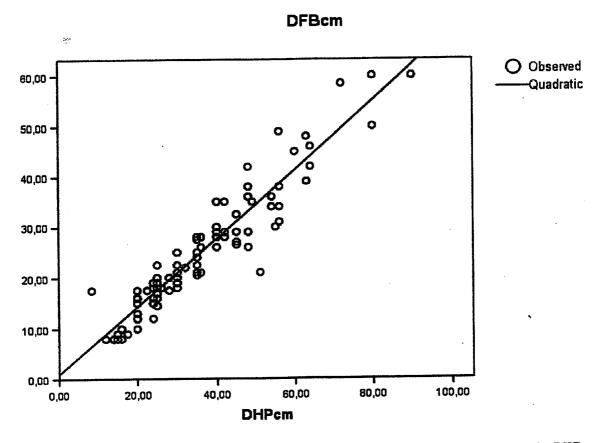


Fig.10 Graphique de la relation quadratique entre DFB et DHP

La figure 10 présente la courbe de l'équation de la régression quadratique, les points autour de la droite montrent qu'il ya une très forte relation entre DFB et DHP, ayant comme coefficient de détermination (R²= 89,39%).

La figure 11 dénote la présentation de l'équation quadratique pour la relation entre VOL et DHP.

VOL

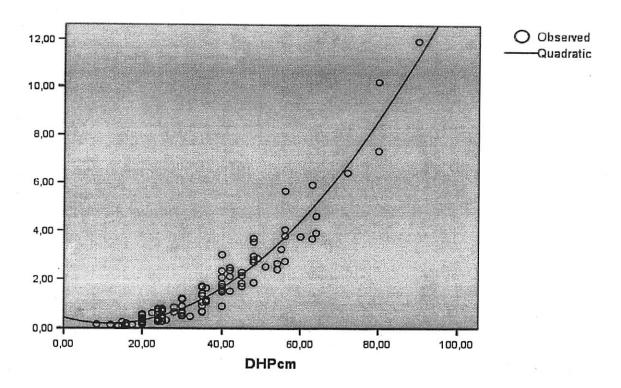


Fig 11. Graphique de la régression quadratique entre VOL et DHP.

La figure 11 présente la courbe de l'équation de la régression quadratique, les points autour de la courbe indiquent qu'il ya une très forte relation entre VOL et DHP, ayant comme coefficient de détermination (R²= 93,29%).

La figure 12 montre la présentation de l'équation quadratique pour la relation entre ST et DFB.

ST

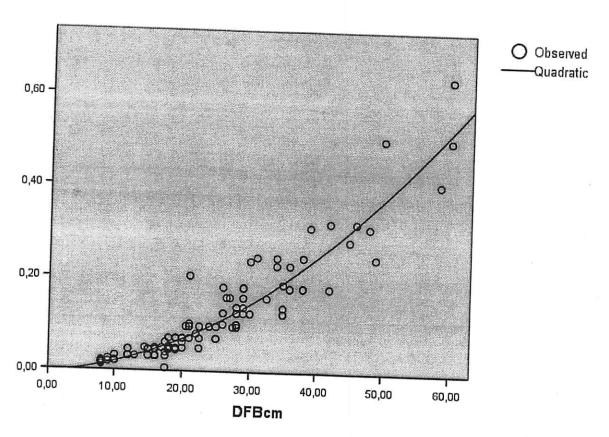


Fig 12. Graphique de la régression quadratique entre ST et DFB.

La figure 12 présente la courbe de l'équation de la régression quadratique, les points autour de la courbe dénotent qu'il y a une très forte relation entre ST et DFB, ayant comme coefficient de détermination ($R^2 = 88,48\%$).

La figure 13 montre la présentation de l'équation quadratique pour la relation entre VOL et DHP.

VOL

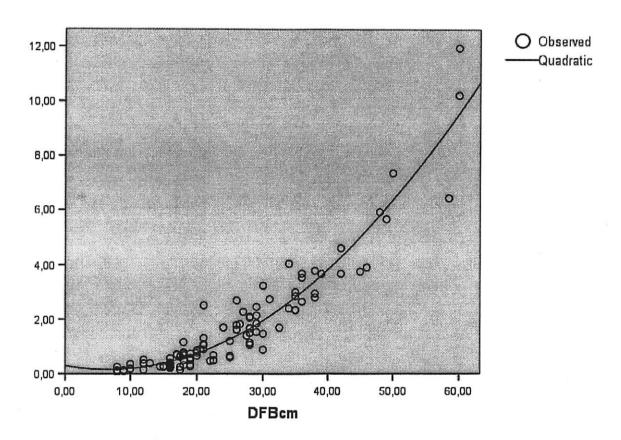


Fig 13. Graphique de la régression quadratique entre VOL et DFB.

La figure 13 présente la courbe de l'équation de la régression quadratique, les points autour de la courbe montrent qu'il y a une très forte relation entre VOL et DFB, ayant comme coefficient de détermination ($R^2 = 91,28\%$).

La figure 14 dénote la présentation de l'équation de puissance pour la relation entre HT et HF.

HT

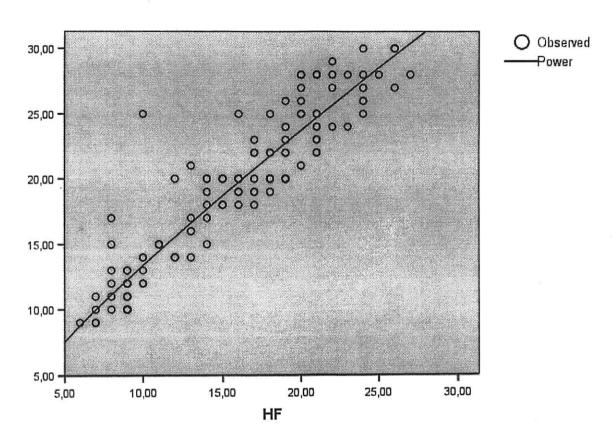


Fig 14. Graphique de la régression de puissance entre HT et HF.

La figure 14 présente la courbe de l'équation de la régression puissance, les points autour de la courbe indiquent qu'il y a une très forte relation entre HT et HF, ayant comme coefficient de détermination (R^2 = 86,83%).

La figure 15 montre la présentation de l'équation quadratique pour la relation entre ST et VOL.

ST

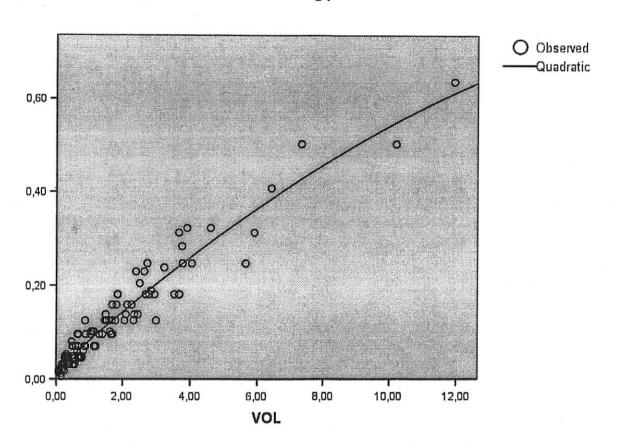


Fig 15. Graphique de la régression quadratique entre ST et VOL.

La figure 15 présente la courbe de l'équation de la régression quadratique, les points autour de la courbe dénotent qu'il y a une très forte relation entre ST et VOL, ayant comme coefficient de détermination ($R^2 = 97,39\%$).

3.2. DISCUSSION

3.2.1. COMPARAISON DE RELATION ENTRE LES DIFFERENTS PARAMETRES DENDROMETRIQUES.

Le tableau 6 reprend la comparaison de relations entre les paramètres dendrométriques de *Pycnathus angolensis* avec d'autres essences.

Tableau 6 : Comparaison des relations des paramètres dendrométriques de Pycnanthus angolensis avec d'autres essences.

Essences	Relation très	Relation	Relation	source
	fortes	modérée	basse	
1. Pycnanthus angolensis à MASAKO.	DFB et DHP VOL et DHP DFB et ST DFB et VOL HF et HT ST et VOL	VOL et HF VOL et HT	DHP et HF DHP et HT DHP et Hh DFB et HF HT et DFB DFB et Hh HT et ST ST et HF	Présent travail
2. Gilbertiodendron dewevrei à YOKO.	DHP et ST DHP et VOL	HF et HT	DHP et HF DHP et HT Dfb et Hh HF et Dfb HT et Dfb HT et ST Hh et ST Ht et VOL	NDEKE (2008)
3. Scorodophloeus zenkeri à YANGAMBI.	DHP et Dfb HF et HT DFB et DHP	Hh et Ht DFB et HT DHP et HF DHP et HF HF et DHP	Hh et HF DFB et HF DHP et Hh DFB et Hh	MBIKAYI (2007)

Il ressort de ce tableau de très fortes relations entre DFB et DHP, HF et HT retrouvées pour l'essence Scorodophloeus zenkeri à YANGAMBI par MBIKAYI (2007), nous avons trouvé la même relation pour l'essence Pycnanthus angolensis à MASAKO.

Les relations basses sont les mêmes que celles retrouvées pour l'essence Scorodophloeus zenkeri par MBIKAYI (op cit) et pour l'essence Gilbertiodendron dewevrei à YOKO par NDEKE (2008) pour les paramètres suivants : DFB et Hh.

Nous signalons encore de basses relations entre DHP et Hh, DFB et HF qui sont les mêmes que celles retrouvées pour l'essence Scorodophloeus zenkeri par MBIKAYI (op cit).

CONCLUSION ET RECOMMANDATION

A. CONCLUSION

Le présent travail avait pour but de déterminer les relations entre les différents paramètres dendrométriques de Pycnanthus anglolensis.

attendre les objectifs poursuivis hectares ont été délimités et un inventaire a été réalisé pour toutes les tiges ayant un diamètre à hauteur de la poitrine (DHP) ≥ 10 cm. De cet inventaire, il s'est dégagé 123 tiges de angolensis sur les différents paramètres dendrométriques ainsi que les différentes relations ont été étudiées à partir de six modèles de régression (linéaire, exponentielle, logarithmique, puissance, inverse quadratique).

Les résultats ci-dessous ont été obtenus :

- La réserve forestière de MASAKO présente une densité moyenne de 30,75 pieds par hectare de *Pycnanthus angolensis*;
- Le Pycnanthus angolensis présente les caractéristiques dendrométriques suivantes: DHP moyen = 34,5 cm, Dfb moyen = 23,87 cm, HT moyenne = 19,63 m? HF moyenne = 15,97 m, Hh moyenne = 3,75 m; ST moyenne = 11,49 m²/ha et VOLF myen = 1,55 m³
- Les relations très fortes sont signalées entre :
- Diamètre fin brut et diamètre à hauteur de la poitrine $(R^2 = 0.8939)$;
- Volume fût et diamètre à hauteur de la poitrine ($R^2 = 0,9329$);
- Surface terrière et diamètre fin bout (R² = 0,8848) ;
- Volume fût et diamètre fin bout (R² = 0,9128) ;

- Hauteur totale et hauteur fût (R² = 0,9693) ;
- Les équations de régression importante retenue :
- DFB = $0.9718 + 0.6599DHP + 0.0002 DHP^2 (R^2 = 89.39 %)$
- VOL = $0,4291 + 4,1748 \text{ DHP} + 17,9928 \text{ DHP}^2 (R^2 = 93,29 \%)$
- ST = 0.0065 + 0.1285 DFB + 12538 DFB² (R² = 88.48 %)
- VOL = $0,3002 + 4,3436 DFB + 32,8779 DFB^2 (R^2 = 91,28 %)$
- HT = 1,9957 HF 0,8263 (R² = 86,83 %)
- ST = $5,0629 + 36876 \text{ VOL} + 6,9131 \text{ VOL}^2 (R^2 = 97,39 \%)$

Ainsi donc, nous constatons que le modèle de régression quadratique est retenu 5 fois et le modèle de puissance 1 fois. Nous affirmons notre deuxième hypothèse.

Dans la plupart des paramètres, le modèle de régression inverse serait faible. Nous acceptons notre première hypothèse, étant donné que dans la plupart de cas le modèle de régression inverse dégage une corrélation faible.

B. RECOMMANDATION

Nos recommandations s'adressent aux chercheurs de pouvoir approfondir l'étude des relations entre les différents paramètres dendrométriques des essences de forêts denses humides pour avoir des conclusions générales.

REFERENCE BIBLIOGRAPHIQUE

- 1. BAELONGANDI, L.1986: Flore et végétation ségetales et postculturales de MASAKO (Kisangani).91p.
- 2. BIGUMA, J.2006: Contribution à l'élaboration d'un tarif de cubage de Staudtia stipitata (S.Kamerunsis)

 Warb dans la réserve floristique de LOWEO

 (YANGAMBI, RDC). Mémoire inédit .FSA/UNIKIS.

 10 p.
- 3. CIFOR et al, 2007: La forêt en République Démocratique du Congo post-conflit. Analyse d'un Agenda prioritaire. 1-5 p.
- 4. CLEMENT, J.et STRASFOGEL, S.1986: Disparition de la forêt, quelles solutions à la crise du bois de feu. Edition l'HARMATAN, rue de l'école polytechnique 75005 Paris. 5 7p.
- 5. CROIZER, C. et al, 2007: Nos forêts notre avenir, Magasine de la Coopération Belge en République Démocratique du Congo. Numéro thématique sur les forêts du Congo. 1 p.
- 6. DUDU, A. M. 1991: Etude de peuplement d'insectivores et de rongeurs de la forêt ombrophile de base altitude du Zaïre (Kisangani, Masako). Thèse de doctorat inédit, Anvers.171 p.
- 7. FAO, 1982: Les Eucalyptus dans le reboisement, Rome.15 p.
- 8. GERMAIN et EVRARD, C.1956: Etude écologique et phytosociologique de la forêt à Brachystegia laurentii. Pub. INEAC, Série, n°67 Bruxelles. 159 p.
- 9. GOFFAUX, J. 1990: Notions de climatologie. Centre de recherches pédagogiques; Kinshasa. 249 p.
- 10. JUAKALY, M. 2002: Macrofaune et mésofaune du sol dans un

système de culture sur brulis en zone équatoriale (MASAKO, KISANGANI, RD.CONGO):
Distribution spatiale et temporelle.
D.E.S. Inédit, Fac. Sci. UNIKIS. 86 p.

- 11. KAHINDO, T. 2006: Contribution à l'élaboration de Tarif de cubage de Funtumia africana (Benth) Stapf dans la réserve forestière de YOKO Bloc nord (UBUNDU, Province Orientale. RDC).

 Mémoire inédit FSA/UNIKIS.10 15 p.
- 12. LEJOLY, J et LYSOWSKI, S. 1978 : Plante's vasculaires des sous-régions de Kisangani et de la Tshopo (Haut-Zaïre) . Manuel polycopié, Fac.Sci. Kisangani, 128 p.
- 13. LEJOLY, J et al, 1988 a : Catalogue des plantes productions de Kisangani et de la Tshopo (Haut-Zaïre) 3 de de la Tshopo (Haut-Zaïre) labor. Botan. Syst. Phytos. ULB, 122 p.
- 14. LEJOLY, J et al, 1988 b : Recherches floristiques,
 écologiques et agrostologiques du Zaïre.
 Act. CEMUBAC. 87 110 p.
- 15. LOKOMBE, D ; 1996 : Etude dendrométrique de la forêt à Gibertiodendron dewevrei dans la collectivité de BAMANGA DES inédit.

 IFA/YANGAMBI. 124 p.
- 16. LOKOMBE, D ; 2004 : Caractéristiques dendrométriques et stratégies d'aménagement de la forêt dense, humide à Gilbertiodendron dewevrei en région de BANGAMISA. Thèse de doctorat, inédit IFA/YANGAMBI.
- 17. LOTIKA, 2007 : Contribution à l'étude structurale de la forêt secondaire de MASAKO (KISANGANI/RDC).

 Mémoire inédit FSA/UNIKIS p .5.
- 18. MAKANA, 1986 : Contribution à l'étude forestique et

écologique de la forêt à *Gilbertiodendron*dewevrei (DEUMLD) J.léon de MASAKO

/Kisangani Mémoire inédit, FSC/UNIKIS 3-10p.

- 19. MAMBANGULA ? L.N. 1988 : Etude floristique et biologique des lianes et herbes grimpantes des forets secondaires et primaires de MASAKO/ HAUT-ZAIRE, mémoire inédit F.SC., KISANGANI 62P.
- 20. MATE, M.2001 : Croissance, phytomasse et minéralomasse des hâres des légumineuses améliorantes en cultures en allées à Kisangani (République Démocratique du Congo). Thèse de doctorat inédit, Fac.Sc, ULB, 235 p.
- 21. MBAYU, F., 2006 : Etude dendrométrique de la forêt mixte de la réserve de YOKO 3 15 p.
- 22. MBIKAYI, 2007 : Contribution à l'étude des relations entre différents Paramètres dendrométriques de Scorodophloeus zenkeri. Dans la réserve floristique de LOWEO à YANGAMBI (RD.Congo).

 Mémoire inédit FSA/UNIKIS 1 25 p.
- 23. MUKINZI, I, KATUALA, P.G.B., Kennis, J. Gambalemoke M, and Hutter, R.2005: Preliminary data on the biodiversity of rondents and insectvores (Mamalia) in the Periphery of Kisangani (D. R. Congo) Belg.

 J.2006, 1355 Supplement/ 133-140 p.
- 24. RAMADE, F. 1984. Eléments d'écologie: Ecologie fondamentale MUGRAW-Hill, Paris IX-397p.
- 25. SINDANI, K.1987 : Phytomasse et productivité de quelques peuplements forestiers des Alpes de Haute province (France) et de YANGAMBI (Zaïre).

 Thèse de Doctorat ; ULB ; 224p.

- 26. SOKI, K. 1994 : Biologie et écologie des termites

 (Isoptère) des forets ombrophiles du Nord

 est du Zaïre (Kisangani). Thèse de

 doctorat inédite, ULB 329p.
- 27. UPOKI.A.1997 : Aperçu systématique et écologie des espèces aviennes de la réserve forestière de MASAKO et ses environs (Kisangani, hautzaire dissertation DES, Fac. SCI. Kisangani. 77p.
- 28. UPOKI A. 2001 : Etude du peuplement de

 Bulbuls (pycnomotidae, passériformes) dans
 la réserve forestière de MASAKO à

 Kisangani (R.D.Congo) Thèse de Doctorat

 inédite, Fac sci, Kisangani. 91 p.
- 29. VIVIEN J. et FAURE, 1985 : Arbres des forêts denses d'Afrique centrale. 320p
- 30. W W W.Congo :L'étude prospective du secteur forestier en

 Afrique (FOSA). République Démocratique du

 Congo. 13-30PP
- 31. YUMA, P.2007 : Analyse des caractères dendrométriques de la forestière de MASAKO (Province Orientale.R.D.Congo) mémoire inédit FSA/UNIKIS 1-16p.

TABLE DES MATIERES

DEDICACE	, PAGE	ES
REMERCIEMENTS		
LISTE DES TABLEAUX	•	
LISTE DES FIGURES		
LISTE DES ABREVIATIONS		
LISTE DES ANNEXES		
RESUME	I	
ABSTRACT		
O. INTRODUCTION	•	1
0.1. PROBLEMATIQUE		
0.2. HYPOTHESE		
0.3. OBJECTIF DU TRAVAIL		
0.4. BUT DE L'ETUDE		
0.5. INTERET DE L'ETUDE		0
0.6. SUBDIVISION DU TRAVAIL		3
CHQPITRE PREMIER GENERALITES		
1.1. MILIEU D'ETUDE		
1.1.1. Situation géographique	Į.	4
1.1.2. Historique de réserve		5
1.1. 3 . Climat		
1.1. 4 . Sol.		
1.1.5 Relief et Géologie	4	7
1.1. 6 . Hydrographie		
1 .1. g .Végétation		
1.1.8. Population		
1.2. DESCRIPTION GENERALE DU PYCNANTHUS ANGO		
1.2.1. Identité		.10
1.2.2. Aire de distribution		.10
1.2.3. Dénomination		10
1.2.4. Description dendrologique		.10
1.2.5. Anatomie		11

1.3. TRAVAUX ANTERIEURS	14
Chapitre deuxième MATERIELS ET METHODES	15
2.1. Matériels	15
2.1.1. Matériel biologique	
2.1.2. Matériel technique	
2.2. Méthode de travail	16
2.2.1 Délimitation des parcelles	
2.2.2. Dénombrement et mesure dendrométrique	
2.2.3. Choix de l'échantillon	18
2.2.4. Compilation des donnés	18
2.2.5. Autres formules statistiques utilisées	
2.2.6. Etude des relations entre différents paramètres	
2.2.7. Traitement des données	20
Chapitre Troisième RESULTATS ET DISCUSSION	21
3.1. RESULTATS	21
3.1.1. DENSITE DU PEUPLEMENT	21
3.1.2. DIAMETRE	21
3.1.2.1. Diamètre à hauteur de poitrine	
3.1.2.2. Diamètre fin bout (Dfb)	22
3.1.3. Hauteur	4
3.1.3.1. Hauteur fût	<u>'</u> 4
3.1.3.2. Hauteur totale (HT)2	4
3.1.33. Hauteur houppier (Hh)	25
3.1.4. Surface Terrière2	26
3.1.5. VOLUME FUT	
3.1.6. RELATION ENTRE DIFFERENTS PARAMETRES DENDROMETRIQUES2	28
3.1.6.1. Relations basses2	
3.1.6.2. Relation modérées2	
3.1.6.3. Relations très fortes3	0
3.1.7. EQUATION DE REGRESSION	

3.2. DISCUSSION	37
3.2.1. COMPARAISON DE RELATION ENTRE LES DIFFÈRENTS	
PARAMETRES DENDROMETRIQUES	37
CONCLUSION ET RECOMMANDATION	40
A. CONCLUSION	40
B. RECOMMANDATION	41
REFERENCE BIBLIOGRAPHIQUE	42
TABLE DES MATIERES	46
ANNEXES	

ANNEXE 1 : DONNEES DU TERRAIN : LISTES DE PYCNANTHUS ANGOLENSIS INVENTORIEES DANS HUIT PARCELLES.

		VENTORIE DFB		HUIT PARC	<u>ELLES.</u>	Hh
DHP(cm)	DHP(m)		DFB(m)		30	4
48	0,48	36	0,36	26	24	3
25.	0,25	18	0,18	21		6
16	0,16	10	0,1	14	` 20	
24	0,24	18	0,18	22	27	5
20	0,2	16	0,16	14	15	1
24	0,24	18	0,18	21	28	7
25	0,25	19	0,19	19	20	1
42	0,42	35	0,35	20	28	8
42	0,42	29	0,29	24	27	3 2 2
35	0,35	24	0,24	24	26	2
20	0,2	12	0,12	24	26	
25	0,25	18	0,18	18	22	. 4
40	0,4	26	0,26	20	28	8
42	0,42	28	0,28	21	~ 23	2
15	0,15	8	0,08	22	24	2
56	0,56	49	0,49	26	30	4
40	0,4	35	0,35	21	28	7
24	0,24	12	0,12	13	16	3 7
20	0,2	16	0,16	22	29	
. 25	0,25	17	0,17	19	22	3
20	0,2	12	0,12	18	20	2
35	0,35	28	0,28	21	24	3 2 3 2
16	0,16	10	0,1	12	14	2
20	0,2	16	0,16	13	21	8
12	0,12	8	0,08	16	19	
48	0,48	36	0,36	25	28)
40	0,4	35	0,35	27	28	1 '1
49	0,49	35	0,35	20	26	
48	1	42	0,42	23	24	
20		10	0,1	18		
30	I .	18	0,18	24	30	
40	1	28	0,28	22		
25		17	0,17	20	27	1
25		20	0,2	19		
64		42	0,42	20		
40		28	0,28	18		
30		25	0,25	20		
36	1	26	0,26	21		2 1
42		28	0,28			
35		22,5	0,225	10		2 2
24		15	0,15	i 9		
90		60				
40		26	II.			
24	0,24	15)
14		8				
17,5		9				1
8,5	0,085	17,5		10		
28	0,28	17,5	0,175			
20		16		5		
24				•		
45	0,45	26,5	0,265	17	7 19	3 1

25	0,25	14,5	0,145	8	17		9	
30	0,3	19	0,19	12	20	Í	8	
40	0,4	29	0,29	16	19		3	
48	0,48	26	0,26	23	28		5	
80	0,8	50	0,5	21	28	•	7	
20	0,2	13	0,13	17	22		5	
22,5	0,225	17,5	0,175	19	23		4	
20	0,2	16	0,16	16	. 18		2	
35	0,35	27,5	0,275	18	20		2	
25	0,25	18	0,18	13	17		4	
14	0,14	8	0,08	9	10		1	
24	0,24	18	0,18	19	. 24		5	
15	0,15	9	0,09	7	11		4	
72	0,72	58,5	0,585	19	26		7	
48	0,48	38	0,38	20	25			
28	0,48	20	0,2	18	25		5 7	
		21	0,21	16	20	-	4	
35 40	0,35	28	0,21	16	25		9	
40	0,4	26 27	0,28	21	25	ļ	4	
45	0,45		0,27	17	22		5	
30	0,3	21		16	20		4	
36	0,36	21	0,21		27	-	1	
80	0,8	60	0,6	26	10		1	
14	0,14	8	0,08	9	12			
20	0,2	16	0,16	9			3 5	
32	0,32	22	0,22	8			3	
48	0,48	38	0,38	19	22		3 3 3 2	
24	0,24	19	0,19	15	18		3	
14	0,14	8	0,08	9	12		3	•
30	0,3	20	0,2	17	19		4	
25	0,25	22,5	0,225	11	15 18		4	
45	0,45	32,5	0,325	14			5	
48	0,48	29	0,29	15	20		4	
20	0,2	16	0,16	11 9	15 11		2	
20	0,2	16	0,16	1	10		1	
20	0,2	17,5	0,175	9		i	2	
20		16	0,16	8	10 25		4	
56		38	0,38	21	25			
16	0,16	8	0,08	7	9		2	
36		28	0,28	14	20			
48		29	0,29	15	18		3 3 5 2 4	
25		19	0,19	7	10	1	٥ -	
35		20,5	0,205	14	· 19		5	
30	0,3		0,19	10	12 14		2	
30		19	0,19	10	14		4	
20		16	0,16	8 7	\ 9		2	•
20		12	0;12	9	10		1	
30		22,5	0,225	13	14		1	
36		28	0,28	9	14		1	
24		16	0,16	16	20		4	
54		36 18	0,36 0,18	8	11		3	
26		18	0,18	19	20		1	
45 24		L .		12				
54				15			2	ı
54	·	1 34	0,34	13	10	 	— <u> </u>	

,ı

40	0,4	30	0,3	15	¹ 18	3
30	0,3	20	0,2	13	16	3
60	0,6	45	0,45	17	19	2
36	0,36	28	0,28	14	° 17	3
40	0,4	30	0,3	9	11	2
35	0,35	25	0,25	9	13	4
25	0,25	16	0,16	11	15	4
20	0,2	15	0,15	10	` 13	3
35	0,35	24	0,24	24	28	4
56	0,56	34	0,34	24	27	3
35	0,35	21	0,21	20	25	5
64	0,64	46	0,46	16	20	4
51	0,51	21	0,21	21	22	1
30	0,3	25	0,25	10	25	15
63	0,63	39	0,39	17	23 .	
56			0,31	17	20	3
63				24	25	1
55			I.	21	23	2

ANNEXE 2 : CALCUL DE SURFACE TERRIERE ET DU VOLUME INDIVIDUEL

DHP(cm)	DHP(m)	DFB	DFB(m)	HF	ST	VOL ·
48	0,48	36	0,36	26	0,18095574	3,6756634
25	0,25	18	0,18	21	0,04908739	0,78261
16	0,16	10	0,1	14	0,02010619	0,19572122
24	0,24	18	0,18	22	0,04523893	0,77754418
20	0,2	16	0,16	14	0,03141593	0,36065484
24	0,24	18	0,18	21	0,04523893	0,74220126
25	0,25	19	0,19	19	0,04908739	0,73568246
42	0,42	35	0,35	20	0,13854424	2,34755511
42	0,42	29	0,29	24	0,13854424	2,45515466
35	0,35	24	0,24		0,09621128	1,69740251
20	0,2	12	0,12	24	0,03141593	0,51270792
25	0,25	18	0,18	18	0,04908739	0,67080857
40	0,4	26	0,26		0,12566371	1,78756622
42	0,42	28	0,28	21	0,13854424	
15	0,15	8	0,08	22	0,01767146	
56	0,56	49	0,49	26	0,24630086	l'
40	0,4	35	0,35	21	0,12566371	
24	0,24	12	0,12	13	0,04523893	1
20	1	16			0,03141593	1
25		17	0,17		0,04908739	
20		12	0,12		0,03141593	1
35	0,35		· ·		0,09621128	
16	0,16				0,02010619	
20	0,2			1	1 - 1	1
12	0,12		4		0,01130973	1
48	0,48				0,18095574	
40	0,4				1 '	
49			4	ľ		
48	1			1	1 '	1
20	I		1			
30	0,3	18	0,18	24	0,07068583	1,15359282

40	0,4	28	0,28	22	0,12566371	2,05962814
25	0,25	17	0,17	20	0,04908739	0,71785392
25	0,25	20	0,2	19	0,04908739	0,76478146
64	0,64	42	0,42	20	0,32169909	4,60243324
40	0,4	28	0,28	18	0,12566371	1,6851503
30	0,3	25	0,25	20	0,07068583	1,1977322
36	0,36	26	0,26	21	0,1017876	1,62624544
42	0,42	28	0,28	15	0,13854424	1,50089589
35	0,35	22,5	0,225	10	0,09621128	0,67986029
24	0,24	15	0,15	9	0,04523893	0,28309677
90	0,9	60	0,6	26	0,63617251	11,9459061
40	0,4	26	0,26	18	0,12566371	1,6088096
24	0,24	15	0,15	8	0,04523893	0,25164157
14	0,14	8	2 0,08	6	0,0153938	0,06126106
17,5	0,175	9	0,09	9	0,02405282	0,13686545
8,5	0,085	17,5	0,175	10	0,0056745	0,1486366
28	0,28	17,5	0,175	1	0,06157522	0,64221026
20	0,20	16	0,16	l	0,03141593	0,23184954
		19	0,19	9	0,04523893	0,33116314
24	0,24	1	0,265	l I	0,15904313	
45	0,45	26,5	0,203 0,145	1	0,04908739	
25	0,25	14,5	0,143	1	0,07068583	0,59423225
30	0,3	19	0,19	: +	0,12566371	1,53372553
40	0,4	29	0,29		0,12305574	l I
48	0,48	26	0,26	l i	0,50265482	'
80	1 1	50	0,5		0,03141593	
20		13	0,13			1 ' 1
22,5		17,5	0,175		0,03141593	
20		16	0,275		0,09621128	1
35		27,5 18		3	0,04908739	
25		8			1 '	1 ' 1
14	1	0 18				
24	1 1	9		1	0,01767146	
15					1 -	1 '
72		58,5			1	
48		38			1 *	1
28		20 21	1	1	1	1 '
35			i		1 1	
40		28	1			1 '
45		27	l .	1	1	1 - 1
30		21 21	l .	·		1 '
36		60		•	1 7	1 '
80		8	1	·)	1	1 1
14	1	16	1	* I	1 '	1
32		22	l l	- I	1 *	L
48	1	38	1	-1	1 '	
24		19	1	- 1		1
14	1	'8)	· 1 .	1 '	
30	L	20	1	~1	1 '	
2:		22,5				
4	i i	32,5	1	· 1	0,1590431	1,69400566
4		29		- 1	1 '	1,85255792
2			· ·	1	0,0314159	
	0,2		1		0,0314159	3 0,23184954
		<u></u>				

Q

.

20	0,2	17,5	0,175	9	0,03141593	0,24960935
20	0,2	16	0,16	8	0,03141593	0,20608848
56	0,56	38	0,38	21	0,24630086	3,77697977
16	0,16	8	0,08	7	0,02010619	0,08796459
36	0,36	28	0,28	14	° 0,1017876	1,14353973
48	0,48	29	0,29	15	0,18095574	1,85255792
25	0,25	19	0,19	7	0,04908739	0,27104091
35	0,35	20,5	0,205	14	0,09621128	0,90452343
30	0,3	19	· 0,19	10)	0,07068583	0,49519354
30	0,3	19	0,19	10	0,07068583	0,49519354
20	0,2	16	· 0,16		0,03141593	0,20608848
20	0,2	12	0,12		0,03141593	0,14953981
30	0,3	22,5	0,225		0,07068583	0,49700978
36	0,36	28	0,28		0,1017876	1,06185832
24	0,24	16	0,16		0,04523893	0,29405307
54	0,54	36	0,36		0,2290221	2,64647765
26	0,26	18	0,18		0,05309292	0,31415927
45	0,45	29	0,29		0,15904313	2,13840358
24	0,24	16	0,16			0,39207076
54	0,54	34	0,34			2,39860599
40	0,4	30	0,3		0,12566371	1,47262156
30	0,3	20	0,2		0,07068583	0,66366145
60	0,6	45	0,45		0,28274334	3,75518497
36	0,36	28	0,28	1	1 .	
40	0,4	30			0,12566371	0,88357293
35	0,35	25	0,25		0,09621128	
25	0,25	16			0,04908739	
20	0,2	15	l .		1 7	
35	0,35	24	i i			
56		34			1 -	
35		21	i .			1
64		46				1
51	1	21	1	L	1 '	1 .
30		25	· ·		1 '	1
63	1	39		l l	I '	'
56	1	31				1 .
63	1	48			1 '	1
55	0,55	30	0,	3 21	0,23758294	3,23002210

?

٠.

ANNEXE 3 : DISTRIBUTION DES FREQUENCES DES TIGES PAR CLASSE DE DHP.

Classe de DHP	Indice de	Fréquence	Fréquence	Fréquence
(en cm)	classe	observée	cumulée	relative (%)
10 - 20	15	11	11	8,94
20 - 30	25	42	, 53	34,15
30 - 40	35	26	79	21,14
40 - 50	45	27	106	21,95
50 – 60	55	· 8	`114	6,50
60 – 70	65	. 5	119	4,07
70 - 80	75	1	120	0,8
80 - 90	85	2	122	1,63
90 - 100	95	1	123	0,8
TOTAL		123		99,98
DHP Moyen (cm)	34,5			
Coefficient de variation (%)	44,73		,1	

ANNEXE 4 : DISTRIBUTION DES FREQUENCES DES TIGES PAR CLASSE DE DIAMETRE FIN BOUT.

Classe de Diamètre	Indice de	Fréquence	Fréquence	Fréquence
fin bout (cm)	classe	observée	cumulée	relative (%)
8 - 17,9	12,95	40	40	32,52
18 - 27,9	22,95	41	81	33,33
28 - 37,9	32,95	28	109	· 22,76
38 - 47,9	42,95	. 8	117	6,50
48 - 57,9	52,95	3	120	2,44
58 - 67,9	62,95	, 3	123	2,44
	1	,	1	•
TOTAL	İ	123		99,99
Dfb Moyen (cm)	23,87			
Coefficient de variation (%)	46,84			

. ANNEXE 5 : DISTRIBUTION DES TIGES PAR CLASSE DE HAUTEUR TOTAL

Classe de la	Indice de	Fréquence	Fréquence	Fréquence
hauteur totale (m)	classe	observée	cumulĕe	relative (%)
9 - 11,66	10,33	16	16	13,008
11,66 - 14,32	12,99	, 1 5	¸31	12,195
14,32 - 16,98	15,65	8	39	6,504
16,98 - 19,64	18,31	[.] 16	55	13,008
19,64 - 22,3	20,97	26	81	21,138
22,3 - 24,96	23,63	8	89	6,504
24,96 - 27,62	26,29	21	110	17,073
27,62 - 30, 28	28,95	13	123	10,569
TOTAL		123	, , , , , , , , , , , , , , , , , , , ,	99,999
HT Moyen (m)	19,63		<u></u>	
Coefficient de variation (%)	30,58]	,t	

ANNEXE 6 : DISTRIBUTION DES FREQUENCES DES TIGES PAR CLASSE DE HAUTEUR FUT

Classe de la	Indice de	Fréquence	Fréquence	Fréquence	
hauteur fût (m)	classe	observée	cumulée	relative (%)	
6 - 8,66	7,33	11	11	8,943	
8,66 - 11,32	9,99	23	34	18,699	
11,32 - 13,98	1,65	8	42	6,504	
13,98 - 16,64	15,31	'21	63	17,073	
16,64 - 19,3	17,97	, 22	, <mark>85</mark>	17,886	
19,3 - 21,96	20,63	19	104	15,447	
21,96 - 24,62	23,29	14	118	11,382	
24,62 - 27, 28	25,95	5	123	4,065	
TOTAL		123		99,999	
HF Moyen (m)	15,97				
Coefficient de	34,52	1			

variation (%)

ANNEXE 7 : DISTRIBUTION DES FREQUENCES DES TIGES PAR CLASSE DE HAUTEUR HOUPPIER

Classe de la hauteur	Indice de	Fréquence	Fréquence	Fréquence
houppier (m)	classe	observée	cumulée	relative (%)
1 - 2,01	1,505	41	16	. 33,333
2,01 - 3,02	2,515	24	31	19,512
3,02 - 4,03	3,525	24	39	19,512
4,03 - 5,04	4,535	14 55		11,382
5,04 - 6,05	5,545	6	81	4,878
6,05 - 7,06	6,555	. 8	'89	6,504
7,06 - 8,07	7,565	. 4	110	3,252
8,07 - 9, 08	8,575	13	2	1,626
TOTAL		123		99,999
HT Moyen (m)	3,75		.1	
Coefficient de variation (%)	67,86			

ANNEXE 8 : REPARTITION DE LA SURFACE TERRIERE SELON LES CLASSES DIAMERTIQUES.

Classe de ST (m²/ha)	Indice de	Fréquence	Fréquence	Fréquence '
	classe	observée	cumulée	relative (%)
10 - 20	0 - 20 15		0,19	1,39
20- 30	25	1,74	0,93	12,64
30 - 40	35	2,28	4,21	16,56
40 - 50	45	829	29,63	
50 - 60	55	1,88	10,17	13,65
60 - 70	65	1,55	11,72	11,26
70 - 80	75	0,41	12,13	2,97
80 - 90	85	1,00	13,13	7,26
90 - 100	95	0,64	13,77	4,64
TOTAL		13,77	`	100
Moyenne (m²/ha)	11,49	,		1
C.V (%)	44,73	1		

ANNEXE 9 : REPARTITION DES VOLUMES FUTS SELON LES CHASSES DIAMETRIQUES

Classe de Volume	Indice de	Fréquence	Fréquence	Fréquence
m3	classe	observée	cumulée	relative (%)
10 - 20	15	13,39	1,39	0,73
20- 30	25	18,63	20,02	9,78
30 - 40	35	25,73	45,75	13,48
40 - 50	45	60,02	105,77	31,51
50 - 60	55	26,99	132,76	14,17
60 - 70	65	21,83	154,59	11,45
70 - 80	75	6,42	161,01	3,37
80 - 90	85	17,54	178,55	9,21
90 - 100	95	11,94	190,49	. 6,27
TOTAL		190,49		99,98
Moyenne (m²/ha)	1,55		.1	
C.V (%)	121,44			

ANNEXE 10 : relation entre les différents paramètres de Pycnanthus angolensis

Relation entre DFB et DHP

Equation	Model Summar	у , <u>, , , , , , , , , , , , , , , , , ,</u>			i		Parameter E	stimates	
	R²	F	df1	df2		Sig.	а	b	С
Linear	0,89387319	1019,14542	1		121	8,8311E-61	0,66216878	0,67759659	
Logarithmic	0,82099485	554,958188	1		121	5,0128E-47	53,5209175	22,5311418	
Inverse	0,61869489	196,331179	1		121	4,2536E-27	42,4971597	- 522,573121	
Quadratic	0,89391418	505,579811	2		120		0,97182351		0.00021047
Power	0,8627038	760,306237	1		121		0,77035169		•
Exponential	0,81419684	530,2268	1		121		8,47993219		

Relation entre DHP et DFB

Equation	Model Summar	у					Parameter E	stimates	
	R Square	F	df1	df2		Sig.	Constant	b1	b2
Linear	0,89387319	1019,14542	1		121	8,8311E-61	2,76196936	1,31918194	
Logarithmic	0,81419684	5,30,2268	1	İ	121	4,7995E-46	-57,798653	30,0151895	
Inverse	0,61030415	189,498561	1		121	1,5979E-26	58,3885079	- 463,566047	
Quadratic	0,89397397	505,898794	2		120	3,3477E-59	2,12443509	1.37139516	-0.0008775
Power	0,8627038	760,306237	1		121	1	2,02172343		
Exponential	0,82099485	554,958188	1		121	5.0128E-47		0.03643823	

Relation entre DHP et HF

	ary and Parameter	Estimates							
Dependent Va	ariable: DHPcm								
Equation	Model Summary					Parameter E	stimates		
	R Square	F	df1	df2		Sig.	Constant	b1	b2
Linear	. 0,300319	51,9359515	1		121	5,3634E-11	9,4860169	1,5504936	
Logarithmic	0,29393081	50,3713067	1		121	9,3903E-11	25,6535874	22,156874	
Inverse	0,27301177	45,4401077	1		121	5,6888E-10	53,985785	273,188329	
Quadratic	0,30033963	25,7558938	2		120	4,9344E-10	10,0330948	1,47264644	0,00244079
Power	0,31515137	55,6813773	1		121	1,4338E-11	5,19176255	0,66125018	
Exponential	0,30881141	54,0607592	1		121	2,5282E-11	15,0454919	0.04531537	
The independe	ent variable is HF.			k					

Relation entre DHP et Hh

Equation	Model Summar	y					Parameter E	stimates	
	R Square	F	df1	df2		Sig.	Constant	b1	b2
Linear	0,00731478	0,89161041	1		121	0,34692293	0,32078833	0,00592486	
Logarithmic	0,0081793	0,99785656	1		121	0,3198232	0,31813717	0,02195123	
Inverse	0,00406743	0,49416885	1		121	0,48342387	0,35669493	0,03474747	
Quadratic	0,01405087	0,8550666	2		i 120	0,42782927	0,29494816	0,01938174	0,00127376
Power	0,01173413	1,4366875	1		121	0,23301839	0,2852283	0,07577859	
Exponential	0,01169835	1,43225597	1		121	0,23373619	0,28664533	0,02159534	Į.

Relation entre Hh et DHP

),89161041 ,43225597	df1 1 1	df2 121 121	10,000		b1 1,23459172	b2
478 0	,89161041	df1 1 1	121	0,34692293	3,2518738	1,23459172	b2
	· 1	1		1 '		1	
835 1	,43225597	1	121	0,23373619	4,30867636	0,54170747	
ļ				i	I	i .	1
808 1	,81870939	1	. 121	0,17998572	4,25509908	0,16283495	
952 0	,67712785	2	120	0,51000461	2,64783541	4,6937622	4,10560138
3413	1,4366875	1	121	0,23301839	3,64674284	0,15484751]
793 0	,99785656	1	121	0,3198232	2,67780385	0,37261221	
3	3413	3413 1,4366875 1793 0,99785656	3413 1,4366875 1 1793 0,99785656 1	3413 1,4366875 1 121 1793 0,99785656 1 121	3413 1,4366875 1 121 0,23301839 1793 0,99785656 1 121 0,3198232	3413 1,4366875 1 121 0,23301839 3,64674284 1793 0,99785656 1 121 0,3198232 2,67780385	3413 1,4366875 1 121 0,23301839 3,64674284 0,15484751 1793 0,99785656 1 121 0,3198232 2,67780385 0,37261221

Relation entre VOL et DHP

Dependent Va									
Equation	Model Summar	<u>/</u>				·	Parameter E	stimates	
	R Square	F	df1	df2		Sig.	Constant	b1	b2
Linear	0,82737289	579,932792	1		121	5,5611E-48	2,21804864	10,9850395	
Logarithmic	0,63627204	211,666203	1		. 121	2,4145E-28	5,45605364	3,34235153	
Inverse	0,4077648	83,3107203	1		լ121	1,9291E-15	4,09263726	0,71487711	
Quadratic	0,93287342	833,833776	2		120	4,1084E-71	0,42914973	4,17477587	17,9927989
Power	0,90258333	1121,08727	1	ļ	121	4,9413E-63	14,456017	2,42502477	1
Exponential	0.85002952	685,825467	1	1	121	1,1032E-51	0.08290486	6,78281231	1

Relation entre HF et DHP

Dependent Va	ary and Parameter							
Equation	Model Summar	<u> </u>				Parameter E	stimates	
	R Square	F	df1	df2	Sig.	Constant	b1	b2
Linear	0,300319	51,9359515	1	121	5,3634E-11	9,34046023	0,19369251	
Logarithmic	0,30881141	54,0607592	1	121	2,5282E-11	7,43307263	6,81471691	
Inverse	0,26126701	42,7939581	1	121	1,5315E-09	21.9438451	167,470863	
Quadratic	0,31234705	27,2533152	2	· 120	1,7465E-10	6,7245238	0,34350037	- 0,00177803
Power	0,31515137	55,6813773	1	, 121	1,4338E-11	2,90594728	0,47659929	
Exponential .	0,29393081	50,3713067	1	121	9,3903E-11	9,4825114	0,0132659	

Relation entre HT et DHP

<u>'</u>	ariable: HT							
Equation	Model Summary	/				Parameter E	stimates	
	R Square	F	df1	df2	Sig.	Constant	b1	b2
Linear	0,28556839	48,3654056	1	121	1,9408E-10	12,592334	0,20603843	
Logarithmic	0,30240417	52,4528705	1	121	4,4626E-11	5,61905135	7.35642438	
Inverse	0,26432478	43,4747536	1	. 121	1,1851E-09	26,1989442	183,754359	
Quadratic	0,30088287	25,8225283	2	,120	4,7097E-10	9,37235921	0,390438	0.00218859
Power	0,30928	54,1795237	1	121	2,4249E-11	4,42412474	0,41867535	
Exponential	0,28165896	47,4436676	1	121	2,7177E-10	12,5629689	0.01151552	

Relation entre DHP et HT

	riable: DHPm						-1:	
Equation	Model Summar	у				Parameter E	stimates	
	R Square ;	F	df1	df2	Sig.	Constant	b1	b2
Linear	0,28556839	48,3654056	1	121	1,9408E-10	0,07020717	0,01385996	
Logarithmic	0,28165896	47,4436676	1	121	2,7177E-10	0,37292331	0,24459076	
Inverse	0,26463457	43,5440414	1	. 121	1,1547E-09	0,55990709	3.81509912	-7,3076E
Quadratic	0,28582792	24,0133659	2	120	1,6911E-09	0,04571066	0,01667605	0:
Power	0,30928	54,1795237	1	[₹] 121	2,4249E-11	0,03575553	0,7387108	}
Exponential	0.30240417	52,4528705	1	121	4,4626E-11	0.13835532	0.04110749	1

Relation entre DHP et VOL

	ariable: DHPm							
Equation	Model Summar	у				Parameter E	stimates	
	R Square	F	df1	df2	Sig.	Constant	b1	b2
Linear	0,82737289	579,932792	1	121	5,5611E-48	0,22619464	0,07531815	
Logarithmic	0,85002952	685,825467	1	121	1,1032E-51	0,3634313	0,1253211	
Inverse	0,40497868	82,3540585	1	121	2,571E-15	0,42091124	0,03537938	·
Quadratic	0,9094412	602,552979	2	120	2,6052E-63	0,18408891	0,12567969	- 0,00604168
Power	0,90258333	1121,08727	1	121	4,9413E-63	0,33016338	0,37219551	·
Exponential	0,63627204	211,666203	1	121	2,4145E-28	0,23124744	0,19036658	

Relation entre VOL et DHP

Dependent Va	ary and Parameter ariable. VOL	2011110100						
Equation	Model Summar	у				Parameter E	stimates	
	R Square	F	df1	df2	Sig.	Constant	b1	b2
Linear	0,82737289	579,932792	1	121	5,5611E-48	2,21804864	10,9850395	
Logarithmic	0,63627204	211,666203	1	121	2,4145E-28	5,45605364	3,34235153	!
Inverse	0,4077648	83,3107203	1	121	1,9291E-15	4,09263726	0,71487711	
Quadratic	0,93287342	833,833776	2	120	4,1084E-71	0,42914973	4,17477587	17,9927989
Power	0,90258333	1121,08727	1	. 121	4,9413E-63	14,456017	2,42502477	İ
Exponential	0,85002952	685,825467	1	121	1,1032E-51	0,08290486	6,78281231	

Relation entre DFB et HF

Equation	Model Summar	y				Parameter E	stimates	
	R Square .	F	df1	df2	Sig.	Constant	b1	b2
Linear	0,2989275	51,5927068	1	121	6,0618E-11	0,06162611	0,01108651	
Logarithmic	0,28646618	48,5785066	1	121	1,796E-10	0,18514162	0.15676744	
Inverse	0,26355411	43,3026342	1	121	1,2644E-09	0,37767036	1,92371005	
Quadratic	0,30176906	25,9314537	2	120	4,3646E-10	0,1076337	0.0045398	0,00020526
Power	0,29942673	51,7156973	1	121	5,8015E-11	0,03487378	0,67228719	
Exponential	0,29273228	50,0809018	1	. 121	1,0425E-10	0.10296013	0.04601903	1

Relation entre HT et DFB

riable: HT	· · · · · · · · · · · · · · · · · · ·			ī				
Model Summar	y					Parameter E	stimates	
R Square	F	df1	df2		Sig.	Constant	b1	b2
0,288316	49,0192776	1		121	1,5303E-10	12,7540585	28.8864568	-
0,29636674	50,9645837	1		121	7,5888E-11			
0,25336249	41,0598994	1		121	2,9585E-09	25,6454434	- 1,15160297	·
0,29986485	25,6977402	2		120	5,1394E-10	10,122804	50.4360836	36,2166234
0,30094419	52,0906161	1		121	5.076E-11	·		
0,2776102	46,4995961	1		121		, i		
	R Square 0,288316 0,29636674 0,25336249 0,29986485 0,30094419 0,2776102	0,288316 49,0,192776 0,29636674 50,9645837 0,25336249 41,0598994 0,29986485 25,6977402 0,30094419 52,0906161	R Square F df1 0,288316 49,0,192776 1 0,29636674 50,9645837 1 0,25336249 41,0598994 1 0,29986485 25,6977402 2 0,30094419 52,0906161 1 0,2776102 46,4995961 1	R Square F df1 df2 0,288316 49,0192776 1 0,29636674 50,9645837 1 0,25336249 41,0598994 1 0,29986485 25,6977402 2 0,30094419 52,0906161 1 0,2776102 46,4995961 1	R Square F df1 df2 0,288316 49,0192776 1 121 0,29636674 50,9645837 1 121 0,25336249 41,0598994 1 121 0,29986485 25,6977402 2 120 0,30094419 52,0906161 1 121 0,2776102 46,4995961 1 121	R Square F df1 df2 Sig. 0,288316 49,0192776 1 121 1,5303E-10 0,29636674 50,9645837 1 121 7,5888E-11 0,25336249 41,0598994 1 121 2,9585E-09 0,29986485 25,6977402 2 120 5,1394E-10 0,30094419 52,0906161 1 121 5,076E-11 0,2776102 46,4995961 1 121 3,8447E-10	R Square F df1 df2 Sig. Constant	R Square F df1 df2 Sig Constant b1

Relation entre DFB et HT

Equation	Model Summar	1					Parameter E	stimates	
	R Square	F	df1	df2		Sig.	Constant	b1	b2
Linear	0,288316	49,0192776	1		121	1,5303E-10	0,04260894	0,00998101	
Logarithmic	0,2776102	46,4995961	1		121	3,8447E-10	0,27034397	0,17403204	
Inverse	0,25612889	41,6625872	1		121	2,3513E-09	0,39198654	2,68995538	
Quadratic	0,2893704	24,4321706	2		120	1,2549E-09	0,07799566	0,00591298	0,00010556
Power	0,30094419	52,0906161	1		121	5,076E-11	0,0232473	0,76005471	
Exponential	0,29636674	50,9645837	1	j	121	7,5888E-11	0,09326329	0,04244682	

Relation entre DFB et Hh

Equation	Model Summary						Parameter E	stimates	
	R Square	F	df1	df2		Sig.	Constant	b1	b2
Linear	0,00911811	1,113444	1		121	0,29343689	0,2213179	0,00474092	
Logarithmic	0,00679435	0,827,73987	1		121	0,36473562	0,2227861	0,01433864	
Inverse	0,00188879	0,22897595	1		121	0,63314769	0,24564269	0,01697025	
Quadratic	0,01075786	0,65249122	2		120	0,52258435	0,21218069	0,00949935	0,00045041
Power	0,01371891	1,68307839	1	1	121	0,19698398	0,19527974	0,08546422	
Exponential	0,01672348	2,05795731	1	1	121	0,15399255	0,19452395	0.02693173	

Relation entre ST et DFB

Equation	Model Summar	У				Parameter Estimates		
	R Square	F	df1	df2	Sig.	Constant	b1	b2
Linear	0,84071986	638,66784	1	121	4.2407E-50	- 0,09764026	0.87448037	
Logarithmic	0,66742254	242,825018	1	121		0,39686324	1	
Inverse	0,43617535	93,6057291	1	121	9,5408E-17	0,25058216	0,02678716	
Quadratic	0,88475924	460,649109	2	120	4,9701E-57	0,00654863	0,12845192	 1,25378653
Power	0,8627038	760,306247	1	121	5,242E-54	1,17079478	1.7809737	'
Exponential	0,82099485	554,958197	1	121	5,0128E-47	0,01327705	•	

Relation entre DFB et VOL

Dependent ve	ariable: DFBm								
Equation	Model Summar	у			i		Parameter E	stimates	
	, R Square	F	df1	df2		Sig.	Constant	b1	b2
Linear	0,8157556	535,736362	1		, 121		0,15592846	0,05359969	
Logarithmic	0,82272041	561,537664	1		121	2,7869E-47	0,25345522	0,08836222	
Inverse	0,40692537	83,0215415	1		121	2,1038E-15	0,29502774	0,02541703	
Quadratic	0,89345719	503,153908	2		120	4,4818E-59	0,12656538	0,08872009	0,00421326
Power	0,87398761	839,223063	1		121	2,9066E-56	0,22886748	0,38201768	
Exponential	0,6073325	187,148752	1		121	2,5363E-26	0,15914336	0,19399293	

Relation entre VOL et DFB

Equation	Model Summar	у				Parameter E	stimates	
	R Square	F ,	df1	df2	Sig.	Constant	b1	b2
Linear	0,8157556	535,736362	1	121	2,8803E-46	- 2,08848172	15,2194077	
Logarithmic	0,6073325	187,148752	1	121	2,5363E-26	6,36072888	3,13069402	
Inverse	0,37236468	71,7871114	1	121	6,7561E-14	3,82147152	0,43729416	
Quadratic	0,91276525	627,799318	2	120	2,7629E-64	0,30020225	4,34359868	32,8778796
Power	0,87398761	839,223063	1	121	2,9066E-56	28,5786921	2,28781982	
Exponential	0,82272041	561,537664	1	121	2,7869E-47	0.09168588	9,31077157	

Relation entre HF et HT

Model Summa	ary and Parameter	Estimates						
Dependent Va								
Equation	Model Summar	V				Parameter E	stimates	
	R Square	F	df1	df2	:Sig.	Constant	b1	62
Linear	0,85994167	742,925744	1	· 121	1,752E-53	0,72892165	0,85008579	
Logarithmic	0,83915602	631,281811	1	; 121	7,6656E-50	27,6740735	14,921794	
Inverse	0,77710791	421,86359	1	, 121	2,9725E-41	29,139695	231,070566	
Quadratic	0,86000884	368,598504	2	120	5,8349E-52	1.16941366	0,90072435	0.00131404
Power	0,86829471	797,717859	1	121	4,2245E-55	0,69074385		-,
Exponential	0,84967218	683,90758	1	121		•	0,05849875	
The independe	ent variable is HT.			·			· · · · · · · · · · · · · · · · · · ·	

Relation entre HT et HF

Equation	Model Summar	· · · · · · · · · · · · · · · · · · ·					Parameter Estimates		
Equation	R Square	F	df1	df2		Sig.	Constant	b1	b2
Linear	0,85994167	742,925744	1	· 1:	21		3,48957594	1,01159397	
Logarithmic	0,84967218	683,90758	1	į 1:	21	1,2743E-51	19,6225272	14,5246206	
Inverse	0,78895428	452,335486	1	1:	21	1,0838E-42	32,5818976	- 179,056686	
Quadratic	0,86273478	377,110005	2	1:	20	1,7932E-52	1,03568162	1,36077404	0,01094806
Power	0,86829471	797,717859	1	1:	21	4,2245E-55	1,99569102	0.82630666	
Exponential	0,83915602	631,281811	1	1:	21	7,6656E-50	7,5898427	0.05623694	

Relation entre HT et ST

Equation	Model Summar	у					Parameter E	stimates	
	R Square	F	df1	df2		Sig.	Constant	b1	b2
Linear	0,23653393	37,4877235	1		121	1,1769E-08	16,6016312	27,4335627	
Logarithmic	0,30240417	52,4528706	1		,121	4,4626E-11	29,1470603	3,67821221	
Inverse	0,17869496	26,3265033	1		121	1,1121E-06	21,9817912	0,11805114	
Quadratic	0,27437688	22,687553	2		120	4,392E-09	15,0623666	53,3876747	- 56,9130468
Power	0,30928	54,1795238	1		121	2,4249E-11	31,999243	0,20933768	!
Exponential	0,22323022	34,7733104	1	1	121	3.439E-08	15.7769522	1,49982492	

Relation entre ST et HF

Model Summa Dependent Va	ary and Parameter	Estimates						
Equation	Model Summar	y				Parameter E	stimates	
-	R Square	F	df1	df2	Sig.	Constant b1		b2
Linear	0,25307701	40,9979601	1	121	3,0293E-09	0,04429166	0,00972887	
Logarithmic	0,23610395	37,3985145	1	121	1,2187E-08	0,25588193	0,13573606	
Inverse	0,20942918	32,0539658	1	· 121	1,0283E-07	0,22924824	1,63548936	
Quadratic	0,25907839	20,9802273	2	. 120	1	0,01947615	1	0.0002845
Power	0,31515137	55,6813775	1	i 121	1,4338E-11	0,00211699	1,32250035	
Exponential	0,30881141	54,0607594	1	121	2,5282E-11	0,01777881	0,09063074	
The independe	ent variable is HF.			ţ	<u> </u>	*		

Relation entre VOL et HF

Model Summa	ry and Parameter	Estimates		-			****	
Dependent Va	riable: VOL							
Equation	Model Summar	у				Parameter E	stimates	
	R Square	F	df1	df2	Sig.	Constant	b1	b2
Linear	0,36859974	70,6375518	1	121	9,7489E-14	1,76909441	0,20744696	
Logarithmic	0,32080273	57,1514819	1	. 121	8,612E-12	6,01365718	2,79547711	
Inverse	0,26578376	43,8015858	1	121	1,0483E-09	3,89595441	32,5526735	
Quadratic	0,41585243	42,713772	2	120	9,8029E-15	1,39232767	0,24241169	0,0141047
Power	0,59360761	176,741795	1	, 121	2,0499E-25	0,0016124	2,31647949	
Exponential	0,5791486	166,512411	1	121	1,72E-24	0,06739822	0,15840408	
The independe	ent variable is HF.	l ₃						

Relation entre HF et VOL

Equation	Model Summar	у				Parameter E	stimates	
	R Square	F	df1	df2	Sig.	Constant	b1	b2
Linear	0,36859974	70,6375518	1	121	9,7489E-14	13,2303992	1,77683852	
Logarithmic	0,5791486	166,512411	1	121	1,72E-24	16,5844853	3,65614689	
Inverse	0,39596013	79,317904	1	· 121	6,4575E-15	18,71385	1,23646355	
Quadratic	0,48239079	55,917567	2	.120	6,9202E-18	11,4780167	3,87281644	- 0,25144652
Power	0,59360761	176,741795	1	121	2,0499E-25	15,5889494	0,2562542	·
Exponential	0,32080273	57,1514819	1	. 121	8,612E-12	12,5107293	0,11475777	

Relation entre ST et HF

Model Summa	ary and Parameter	Estimates							
Dependent Va		f _r							
Equation	Model Summar	у					Parameter E	stimates	
	R Square	F	df1	df2		Sig.	Constant	b1	b2
Linear	0,25307701	40,9979601	1		121	3,0293E-09	0,04429166	0,00972887	
Logarithmic	0,23610395	37,3985145	1		121	1,2187E-08	0,25588193	0,13573606	
Inverse	0,20942918	32,0539658	1		121	1,0283E-07	0,22924824	1,63548936	
Quadratic	0,25907839	20,9802273	2	•	120	1,5358E-08	0,01947615		0,0002845
Power	0,31515137	55,6813775	1		121				5,5555
Exponential	0,30881141	54,0607594	1		121		0,01777881	1 '	
The independe	ent variable is HF.							<u> </u>	

Relation entre VOL et HF

Equation	Model Summar	У					Parameter E	stimates	
	R Square	F	df1	df2		Sia	Constant	b1	b2
Linear	0.36859974	70,6375518	1		121	9,7489E-14	1,76909441	0,20744696	
Logarithmic	0.32080273	57,1514819	1		121	8,612E-12	6,01365718	2,79547711	
Inverse	0,26578376	43,8015858	1		121	1,0483E-09	3,89595441	32,5526735	
Quadratic	0,41585243	42,713772	2		120	9,8029E-15	1,39232767	0.24241169	0.0141047
Power	0,59360761	176,741795	1		121	2,0499E-25	0.0016124	2,31647949	
Exponential	0,5791486	166,512411	1	Į	121	1,72E-24	0,06739822	0.15840408	

Relation entre HF et VOL

Equation	Model Summar	У					Parameter E	stimates	
	R Square ·	F	df1	df2		Sig.	Constant	b1	b2
Linear	0,36859974	70,6375518	1		121	9,7489E-14	13,2303992	1,77683852	
Logarithmic	0,5791486	166,512411	1	1	121	1,72E-24	16,5844853	3,65614689	
Inverse	0,39596013	79,317904	1		121	6,4575E-15	18,71385	1,23646355	
Quadratic	0,48239079	55,917567	2		120	6,9202E-18	11,4780167	3,87281644	0,25144652
Power	0,59360761	176,741795	1		121	2,0499E-25	15,5889494	0,2562542	
Exponential	0,32080273	57,1514819	1		· 121	8.612E-12	12.5107293	0,11475777	

Relation entre ST et HT

Dependent Va Equation	Model Summary									
		R Square	IF .	1 454	Tara	T	Parameter Estimates			
		1	 	df1	df2	Sig	Constant	b1	b2	
Linea		0.23653393	37,4877235	1	121	1.1769E-08	0.05829402	0.00862206		
	Brithmic	0.22323022	34.7733104	1	· 121	3.439E-08	0.32425097		į	
invers	_	0.20089812	30.41,99912	1 1	; 121	2.0069E-07	0.24057474			
Quad Powe Expor		0.23966911	18,9130113 54,1795238	1	, 120 121	7.247E-08 2.4249E-11	-9.7902E- 05 0.0010041	I _	0.000173	
		0.30240417 ent variable is HT.	52,4528706	'	1 1	1	0.01503425	0.08221499		

Relation entre VOL et HT

Model Summa	ary and Parameter	Estimatos								
Dependent Va	ariable: VOL	L'attiliates								
Equation	Model Summary	/					T-			
	R Square						Parameter Estimates			
Linear	0.32307065	57.7400.40		df2		Sig.	Constant	b1	b2	
	0.02307065	57.7483424	1		121	7.0107E-12	-1.9534724	0,17803548		
Logarithmic	0.28907743	49,2013776	1		121	1.4325E-10	7.20879813	2.99251496		
Inverse	0,24647143	39.577853	1		121	Ì	4.07815861	44,4648476		
Quadratic	0.34945726	32.230681	2		120	6.2597E-12	1,02948842	0 16488206	0.00000040	
Power	0.55601762	151,53334	1	f	121	4 4664F-23	0,00051975	2 5202222	0,00009849	
Exponential	0.5441593	144.443609	1		121	2 22375 22	0,00031975	2,52822273		
The independe	ent variable is HT		<u>_</u>		141	4.4451E-22	0.05326796	<u>0,14075462</u>		

Relation entre ST et VOL

Equation	Model Summar	у	Parameter Estimates						
	R Square	F	df1	df2		Sig.	Constant	b1	b2
Linear	0,92537469	1			, 121		0.02701422	0,05444594	
Logarithmic	0,69565201	276.57121	1		121		0,12403827	0,07749272	
Inverse	0,25104473	40.5583803	1		121	3,5841E-09	0,15329858	0,01904002	
Quadratic	0,93381348	846,528953	2		120	1,7627E-71	0.01778529	0,06548441	0.0013242
Power	0,90258334	1121.08728	1		121	1 1			0.0010242
Exponential	0,63627204	211,666205	1		121		0.04199946		·