

Closing workshop: "Sustainable land use and resilient livelihoods in the landslide-prone region of Mount Elgon, Uganda" Theme 3. Land degradation, biodiversity loss and

payments for ecosystem services

Mbale, 2-10-2018

Potential of Payments for Ecosystem Services (PES) in the Mt. Elgon area

Mbale, 2-10-2018

Bruno Verbist

With inputs from Stefano Pagiola, Leimona Beria, Meine van Noordwijk, Katrien Geussens, Sanne Baeten, Koen Vanderhaegen, Miet Maertens, Goedele Vandenbroeck, Zerubabel Naturinda, John Sekajugo, Moses Isabirye

What? Ecosystems products and services

Products

- Food
- Fuel wood
- Non-timber forest products
- Fisheries products
- Marine products
- Wetlands products
- Medicinal and biomedical products
- Forage and agricultural products
- Water
- Reeds
- Building material

Services

Watershed services

- Purification of water
- Capture, storage and release of surface and groundwater
- Mitigation of floods and droughts

Biodiversity

• Maintenance of biodiversity (plants and animals)

Climate – Carbon sequestration

- Partial stabilization of climate through carbon sequestration
- Moderation of temperature extremes and the force of winds and waves

Landscape beauty

• Eco-tourism

Identifying environmental services

Demand:

- What specific services?
- Who benefits from these services?
- How much benefit do they receive?

Supply:

- How are these services generated?
- How much more or less of these services would we receive, if land use changed?
- Who generates these services?

Why PES? Past responses have largely failed ...

- Direct government intervention
- Regulatory approaches
- Subsidies (in cash or in kind)
- 'Demonstration' approaches
- Low adoption rates
- Adoption followed by abandonment = Pseudo-adoption

What makes payments for environmental services attractive?

- Efficient:
 - Conserves what is worth conserving
 - Does not conserve what is not worth conserving
- Potentially very sustainable:
 - Not based on whims of donors, NGOs, but self-interest of service users and providers
 - Need for services like water won't go away, so can generate indefinite payment stream
- For this to work, need:
 - Base payments to providers on payments by users
 - To actually deliver services: getting the science right is critical
 - Tailor mechanism to specific local conditions

Valuing services

Why value?

- Value of benefits for users (maximum payment)
- Opportunity cost for suppliers (minimum payment)

Costa Rica: Payments by water users

			Contract	Payment
Firm	Year	Watershed	area (ha)	(US\$/ha/yr)
Energía Global	1997	Río Volcán	2,493	12
Ren	ewed 2002	Río San Fernando	1,818	12
Platanar SA	1999	Río Platanar	1,800	15/30ª
Ren	lewed 2004		F 000	10
CNFL	2000	Río Aranjuez	5,000	42
		Río Balsa	6,000	42
Coordination amon	g users	Río Laguna Cote	900	42
			Higher payment in hi	gh
Florida Ice & Fai Heredia ESPH	rm 2001 2002	Río Segundo	opportunity cost area 1,000	$\left\{ \begin{pmatrix} 45\\ \frac{22}{22} \end{pmatrix} \right\}$
Azucarera El Vie	jo 2004	Acuífero El Tempi	sque 550	42
La Costeña SA	2004	Acuífero de Guana	icaste 100	42
Source : FONAFIF	⁵ 0			

Note : a. Payment to land users without title

Asia: Rewarding the Upland Poor for the Services they provide (RUPES) 2002-2012

1. What about the upland poor?

2. How big is the application domain?

Net impact on livelihood security

ICRAF-Southeast Asia, World Agroforestry Centre www.worldagroforestry.org/

Africa: Potential of PES in Mt. Elgon?

- "Payments for soil and water related ecosystem services. Potential of reward mechanisms around Mount Elgon National park, Uganda" KULeuven MSc Thesis Katrien Geussens 2017-2018
- *"Payments for Carbon Sequestration and Biodiversity Services A Case Study on Mt. Elgon, Uganda"* KULeuven MSc Thesis Sanne Baeten 2017-2018
- *"Perceptions on PES by local stakeholders"* Busitema MSc thesis Zerubali Naturalinda *2017-2018*

EVAMAB project

Title: "Economic valuation of ecosystem services in Man and Biosphere reserves: testing effective rapid assessment methods in selected African MABs" Duration: 30 months (2017-mid 2019)

Partners: CEBIOS KULEUVEN UNIVERSITÉ LIBRE DE BRUXELLES (Capacities for Biodiversity and Sustainable Development

Royal Belgian Institute for Natural Sciences)

Fieldwork in collaboration with local partners through existing projects:

Nelson Mandela African Institute of Science and Technology

EVAMAB project

Focus on 4 Biosphere Reserves (buffer + transition areas):

Principles and criteria - Pro-poor rewards for environmental services

Realistic:

- causal pathways to enhance ES;
- real opportunity, transaction, & implementation costs
- benefits and co-benefit (financial and non-financial)
- Conditional: <u>performance-based</u> contracts in broad understanding (see <u>levels of conditionality</u>), agreed MRV (monitoring, reporting and verification) among all stakeholders

FAIRNESS principle

- Voluntary: meets the Free and Prior Informed Consent standards; willingness to accept responsibilities
- Pro-poor: access, process, decision making and outcomes of the schemes are differentiated by wealth or gender and support a positive bias towards poor stakeholders

Balance between fairness and efficiency?

- Poverty is a major issue enhancement of ES cannot be disentangled from development needs
- Communities depend greatly on social contacts in managing their landscapes
- Strict conditionality generally cannot work in developing countries
 - Lack of data in connecting land use change and ES provisions
 - Lack of monitoring tools, capacities and institutions
 - Human interactions within a social capital follow different rationality when involving money

Even subtle reminder of money elicits big changes in human behaviour (Vohs et al., 2006)

Elements of efficiency and fairness within a reward for environmental service scheme

Rights-based approaches

Van Noordwijk, M., B. Lusiana, G. Villamor, H. Purnomo, and S. Dewi. 2011. Feedback loops added to four conceptual models linking land change with driving forces and actors. Ecology and Society 16(1): r1. [online] URL: http://www.ecologyandsociety.org/vol16/iss1/resp1/

Case 1 Watershed services Mt. Elgon: Soil & Water

• Mount Elgon region:

- High population pressure
- Unsustainable agricultural practices

Land degradation, erosion, landslides ... Lot of sediment in rivers

Can economic incentives help farmers to conserve the soil?

Information gathering

- Group discussions
- Individual interviews
 - Stakeholders
 - Project participants
- Project documents
- Other research

Background

Research objectives

- Identify beneficiaries of water related ES that could and want to pay for this ES
- Assess preferences of land users for
 - different soil conservation measures
 - different types of positive incentives/rewards
- Calculate the **willingness to accept** of farmers for implementing soil conservation measures
- Conclude on overall PES feasibility

Existing Projects and Potential Buyers

- Two PES projects in the past five years using international funding:
 - Community Ecosystem Conservation Fund
 - Ecosystem Based Adaptation

Funding stopped and projects were terminated in 2016 -> Project dependence: Lack of permanence!

- Future PES project with local, user-based funding:
 - National Water and Sewerage Corporation (NWSC)
 - (Doho Rice Scheme)

What is the farmer interested in?

Choice Experiment

Twelve choice cards for representation

- 1. Width of to be protected river banks?
- 2. What soil conservation measures?
- 3. What agricultural practices?
- 4. Compensation amounts?
- 5. Private vs. Communal compensation?
- 6. Assistance needed?

CARD 1	Contract A	Contract B	No Contract
1. Distance to river banks to be protected	₩ 0 м	20 M	ethods
2. Contour trenches and grass bunds	ALL FIELDS	HALF OF FIELDS	ent farming m
3. Soil conserving agricultural practices (minimal tillage, mulching)	HALF OF FIELDS	ALL FIELDS	to keep my curr
4. Yearly compensation	360.000 UGX	90.000 UGX	ny contract and
5. Mode of compensation	COMMUNAL	1 50/50	e not to enter a
6. Assistance in implementation	LABOUR AND TOOLS	TOOLS BUT NO	I choose

Location of sampling sites

- Farmers with land at the river
- Important water sources
- Degraded rivers

Results: Latent Class analysis

- Two classes
- Negative ASC (indicates interest to change current situation) and positive payment effect
- Distance to river ≠ sign in both classes
- Difference in preference for trenches and SCM
- Negative preference for communal payments
- Mostly positive preferences for assistance

	Latent Class 1		Latent Class 2	
	Class share	= 70.2 %	Class share	= 29.8%
ASC	- 0.871 ***	(0.227)	- 1.357 ***	(0.347)
Payment	0.002 ***	(0.000)	0.002 *	(0.000)
Distance to river	0.033 ***	(0.004)	- 0.147 ***	(0.013)
Trenches, half	0.526 ***	(0.108)	- 0.074	(0.267)
Trenches, all	0.492 ***	(0.092)	- 0.029	(0.236)
Soil conservation,	0.350 ***	(0.096)	0.266	(0.241)
nall				(0.0.0)
Soil conservation, all	0.447 ***	(0.447)	0.077	(0.218)
Divided payment	- 0.385 ***	(0.092)	- 0.965 ***	(0.207)
Communal payment	- 0.718 ***	(0.101)	- 1.074 ***	(0.238)
Labour	0.462 ***	(0.117)	0.459 *	(0.269)
Tools	0.443 ***	(0.113)	0.050	(0.259)
Tools and labour	0.689 ***	(0.120)	0.485 *	(0.271)

p<0.1, p<0.03, p<0.01

Categorical variables use dummy coding

Results: Stated vs. Revealed Preferences

Stated preference (CE)

- Gap between stated and revealed preference
- Hypothetical bias
- Barriers to implementation:
 - Land
 - Labour
 - Resources

Results: Willingness to Accept (WTA)

Willingness to Accept

Attribute

Results: Project Costs

Estimation of total project costs

Results: Project Costs

Estimation of total project costs

Policy Implications

- Awareness on benefits of SC is present -> focus on overcoming barriers
- Use individual payments
- Not all farmers require compensations: Efficiency vs. Equity
- Three solutions with increasing cost and increasing ecological benefit
 - 1. Equity with 5 m buffers: only transaction costs
 - 2. Equity with 10 m buffers and individual compensation: UGX 126,170/yr
 - Spatial targetting with 20 m buffers, individual compensation + 20 labour days: UGX 471,790/yr

What is the affordability for the buyer (NWSC) for scenario's 2 & 3?

Potential of carbon payments Case 2: Trees for Global Benefits

- Agroforestry PES project by Ecotrust (Ugandan NGO)
- Ex-ante purchases with Plan Vivo Standard
- °2003 → 2013 in Elgon
- Farmers → responsible for management trees for 25 years
- Conditional payments: first 10 years
- Monitoring, reporting and verifying
- Woodlots → agroforestry

Where is Trees for Global Benefits operating?

Evolution of farmers and area

Increasing monitoring costs

Dependency on few buyers

Methodology: 3-E approach

Effectiveness

Impact on the environment

- 1,2 million tonnes CO₂
- Avoided deforestation
- Promotes biodiversity
- Leakage?

Efficiency

BENEFITS

- Reward in 6 stages
 - ~ buyer
 - ~ exchange rate
- Sale timber, firewood

COSTS

- Inputs
- Seedlings
 - \uparrow discount rate \rightarrow
 - ↑ opportunity cost

- ↑ monitoring costs
- ↑ issuance fee

Efficiency

Equity

Barriers:

- Poverty
- Education
- Gender

≠ Outcome

- Farmer's reward
- Within household
- Communities

Policy Implications

- TGB is successful program:
 - Waiting list of interested farmers!
 - Can carbon sales follow? Need for more marketing!
- From "Trees for Global Benefits" to "Trees for Local Benefits"
 - e.g. consider land slide risk maps to prioritise areas , impact on species choice,
 - Balance other ES (biodiversity, soil & water, ...)
 - Need for (fire)wood creates more interest in tree planting
 - ? Look at land and tree tenure

Some considerations

- A strict interpretation of realistic, conditional and voluntary PES (paradigm CES or commoditized ES) not always obvious: Carbon is doable; Soil and water is more tricky
- Monetary incentives may be counterproductive for public prosocial activities
 - Large interest in labour and tools rather than money
 - undermine existing norms
 - not sufficient and/or durable enough to offset this loss of intrinsic motivation.
- Also consider a livelihoods approach e.g. the five capital types (human, social, physical, financial and natural) in their interactions across scales.
- Replacing the "payment" concept by "co-investment" language is an effort to appeal to both social and financial concepts.

Co-investment and shared responsibility

A language of CIS: "co-investment" and "shared responsibility"

- conducive to the type of respect,
- mutual accountability and commitment to sustainable development
- reference to social exchange rather than financial transactions
- opportunities for phased strategies.

An evolutionary process

After creating a basis of respect and relationships through the paradigm of CIS there may be more space for specific follow-ups in the paradigm of CES for actual delivery of ES to meet conservation objectives.

Conclusions

- High potential for and ongoing successfull PES initiatives
 - e.g. Trees for Global Benefits (Carbon, biodiversity)
 - Soil & Water protection: focus on removing the bottlenecks
- Development context: Consider efficiency vs. fairness, from PES to Co-investment; need for a flexible approach; mix and match different mechanisms ...
- Trade-offs between ES: C vs. Biodiversity
 - Possible solutions by differentiating according to place in the landscape (landslide prevention) and ownership farmers or MENP
- Possible win-wins
 - with soil and water conservation efforts, ... links with other stakeholders (NARO, agricultural extension services, National and Water Sewerage Corporation,)
- Options for scaling up (Soils, National Park, ...)

Further reading

Forest Trends, Katoomba Group & UNEP, 2008. Payments for Ecosystem Services: Getting Started. A Primer

Leimona, B., Van Noordwijk, M., de Groot, R., Leemans, R., 2015. Fairly efficient, efficiently fair: Lessons from designing and testing payment schemes for ecosystem services in Asia. Ecosystem Services 12, 16-28.

Bagstad, K.J., D. Semmens, S. Waage, and R. Winthrop. 2013. A comparative assessment of decision support tools for ecosystem services quantification and valuation. Ecosystem Services 5: 27-39

Peh, K.S.H., Balmford, A., Bradbury, R.B., Brown, C., Butchart, S.H.M., Hughes, F.M.R., Stattersfield, A., Thomas, D.H.L., Walpole, M., Bayliss, J., Gowing, D., Jones, J.P.G., Lewis, S.L., Mulligan, M., Pandeya, B., Stratford, C., Thompson, J.R., Turner, K., Vira, B., Willcock, S. and Birch, J.C., 2013. TESSA: A toolkit for rapid assessment of ecosystem services at sites of biodiversity conservation importance. Ecosystem Services, 5: 51-57.

Huong, T.T.T., Zeller, M., Suhardiman, D. (2016). Payments for ecosystem services in Hoa Binh province, Vietnam: An institutional analysis http://publications.iwmi.org/pdf/H047763.pdf

rupes.worldagroforestry.org/ ICRAF at www.worldagroforestry.org/ TEEBweb.org (The Economics of Ecosystems and Biodiversity) Birdlife: TESSA toolkit: <u>http://www.birdlife.org/worldwide/science/assessing-ecosystem-services-</u> tessa

Thank you! Questions?