

EVAMAB results from Mt. Elgon BR

EVAMAB CROSS-FERTILIZING WORKSHOP, 14TH MAY 2019, BLUE NILE RESORT HOTEL, BAHIR DAR- ETHIOPIA.

> THE BELGIAN DEVELOPMENT COOPERATI

Belgian Science Policy Office

EVAMAB project

Focus on 4 Biosphere Reserves (buffer + transition areas):

Contents

- Mt. Elgon National Park (Fredric Kizza, Chief Warden MENP)
- Perceptions on PES of local people (Zerubabeeli Naturinda, Busitema university)
- Mapping & Marketing Carbon (Koen Vanderhaegen & Bruno Verbist, KULeuven)
- Watershed functions (Bruno Verbist, KULeuven)
- Impact of voluntary standards on **biodiversity** and development in the coffee belt (Koen Vanderhaegen, KULeuven)

Management of the Mt. Elgon National Park and links with PES (Fredric Kizza)

Mount Elgon MAB

Mount Elgon

Tourism

Firewood and timber

Non-wood forest products

Wild mushrooms

Honey

Medicines

Bamboo shoots (malewa)

Water provisioning

Gravity water flow schemes provide clean drinking water to downstream communities

Erosion and Landslide Control

Landslides are yearly causing casualties at Mt. Elgon...

Cultural sites

Bagishu culture

Elgon = Mount Masaba

Local people's perceptions on (P)ES in Mt. Elgon landscape

Zerubabeeli Naturinda¹, Bruno Verbist², Koen Vanderhaegen²

 ¹ Faculty of Natural Resources and Environmental Sciences, Department of Natural Resources Economics, Busitema University
 ² Division Forest, Nature and Landscape, Department of Earth & Environmental Sciences, KU Leuven

Part of Mt. Elgon forest ecosystem

Banana- coffee system at forest edges of Kapkwai, Kapchorwa district

Silted stream with sugarcane growing on its banks, Manafwa district

Protected stream in Bushiyi, Bududa district

Forest collected mushrooms for sale, Bunamubi market, Bududa district

Rapid assessment of ES

The Protected Areas Benefits Assessment Tool

A methodology Nigel Dudley and Sue Stolton, Revised October 2012

tessa

Rapid assessment of ES

 TESSA-tool and PA-BAT tool pilot study in Mt. Elgon region (Uganda)

Rapid assessment of ES

Local experiences with PES

- Looking at past & existing PES in the Elgon area KII (UWA, ECOTRUST, IUCN, ICRAF, ...)
- Household interviews (>100):
 - Perceptions on ES and their willingness to pay for them

Attitudes towards PES

- 66% expressed that they would be willing to pay for continued provision of the ES
- 34% were not willing to pay for ES delivery

Reasons for not willingness to pay for the ecosystem services

- I have a right to forest use
- We already pay much taxes
- This cost should be paid from the national budget
 I can't answer this question
- Forest services' have no monetary value

Mt. Elgon forest adjacent communities are very poor Low income earners & would be willing to pay very little or nothing for conservation

Relationship of willingness to pay for the ecosystem services and socio-economic characteristics

- Correlation analysis show that distance to the forest & economic activities carried out in the area had a significant relationship with WTP for ES (P-Value<0.05)
 Implication: Closeness to the forest increased the urge to pay for continued benefits
- Forest adjacent communities are majorly smallholder farmers with a high dependency on the ecosystem.
- There is a close link between people's WTP to pay for ES and economic activities.
- Most of the respondents were much aware of how important the ecosystem was in supporting agriculture (Water provision & pollination services).

Farmers experiences, ECOTRUST

- The incentives awarded are not commensurate to the efforts put in by local people, but more farmers are on the waiting list to join ECOTRUST activities.
- Most vulnerable groups such as the landless do not benefit
- PES fund boosted local people's involvement in restoration and conservation measures such as agroforestry
- Mt. Elgon region having suffered several disasters such as landslides, land degradation, the local people have moved in fast to engage in EBA measures for sustainable development

Assessment of aboveground carbon in the Mt. Elgon area

Vanderhaegen K.², Verbist B.², Muys B.², Z. Naturinda¹, Isabirye M.¹

 ¹ Faculty of Natural Resources and Environmental Sciences
 Department of Natural Resources Economics, Busitema University
 ² Division Forest, Nature and Landscape, Department of Earth & Environmental Sciences, KU Leuven

Research question

Would carbon projects in the Mt. Elgon region be viable under the current conditions?

Scientific information needed:

> Assess carbon stocks all main LU systems

> Develop a baseline scenario

Estimate the carbon storage potential

Mt. Elgon National Park

C stock changes

Upscaling

Boosted Regression Trees in R

3 models

- Model 1
- upscaling C 2002 data 250 plots
 - Model 2
- predict C change for 174 non-re-measured plots
 - Model 3

upscaling measured and modelled C change 250 plots

46 input variables

- Environment
- Anthropogenic pressure
- Field measurement data
- Remote sensing data

Viable

- **BAU**: +5 Mg C ha⁻¹ yr⁻¹
- **Project**: +7.5 Mg ha⁻¹ yr⁻¹

Addition of 2.5 Mg C ha⁻¹ yr⁻¹

UWAFACE (13248 ha) High estimate **\$ 6** /Mg CO₂ eq: **\$ 728 585 yr**⁻¹

Low estimate \$2.5 /Mg CO₂ eq: \$ 303 600

Whole MENP (85822 ha) **\$ 4 720 209 yr**⁻¹

Or \$ 1 966 754 yr⁻¹

Landscape

- Coffee gardens 2014:
- All LU groundtruth points 2015:
- Detailed inventories all LU 2015:

Tree plantations & Coffee

Land Cover	Biomass C stock	StdDevp
Tree plantation (N=20)	93.46	82.80
Shade coffee (N= 45)	25.26	22.91
Coffee/Banana (N=46)	15.22	10.76
Coffee Plantation (N=5)	14.48	8.59

Banana & annual crops

Land Cover	Biomass C stock	StdDevp
Crops/Banana (N= 7)	15.67	12.18
Banana (N= 12)	12.47	9.44
Crops/trees (N= 14)	6.61	17.06
Crops (N= 34)	4.82	3.85

Fallow & grazing land

Land Cover	Biomass C stock	StdDevp
Fallow (N=23)	5.61	5.69
Grassland (N=9)	1.94	1.26

Conclusions

- Carbon stock data of all land uses available.
- Idem for maps of MENP's biomass stocks with unprecedented level of detail.
- A baseline scenario for MENP is made, on average 5 Mg C is stored per ha per yr.
- Under effective forest protection an additional 2.5 Mg C/ha/yr can be stored.
- Large landscape based C storage potential with agroforestry.

Thanks to the field team of UWA, Busitema University and KLIMOS - KU Leuven!

Ronald Muhereze

Jimmy Masaba

James Matanda

Zerubabeeli John Sekajugo 🕢 Naturinda

BUSITEMA JNIVERSITY Pursuing Excellence

Potential of carbon payments Trees for Global Benefits

Sanne Baeten², Zerubabeeli Naturinda¹, Bruno Verbist², Koen Vanderhaegen²

¹ Faculty of Natural Resources and Environmental Sciences, Department of Natural Resources Economics, Busitema University ² Division Forest, Nature and Landscape, Department of Earth & Environmental Sciences, KU Leuven

- Agroforestry PES project by Ecotrust (Ugandan NGO)
- Ex-ante purchases with Plan Vivo Standard
- °2003 → 2013 in Elgon
- Farmers → responsible for management trees for 25 years
- Conditional payments: first 10 years
- Monitoring, reporting and verifying
- Woodlots → agroforestry

Project areas Trees for Global Benefits?

Increasing monitoring costs

Dependency on few buyers

Distribution of purchases 100 90 80 70 Arla Tetra Pak 60 Closer to Nature" Sveriges godaste hamburgare 10 0 1-100 100-999 1000-9999 10,000-99,999 >100,000 Tonnes CO2 bought % of total number of buyers % of total tonnes CO2 sold

Methodology: 3-E approach

Effectiveness

Impact on the environment

- 1,2 million tonnes CO₂ Avoided deforestation

 - Promotes biodiversity
 - Leakage?

Efficiency

BENEFITS

- Reward in 6 stages
 - ~ buyer
 - exchange rate
- Sale timber, firewood

COSTS

- Inputs
- Seedlings
 - ↑ discount rate →
 - opportunity cost

Equity

Barriers:

- Poverty
- Education
- Gender

≠ Outcome

- Farmer's reward
- Within household
- Communities

Watershed services Mt. Elgon

Katrien Geussens¹, Goedele Van den Broeck¹, Miet Maertens¹, Bruno Verbist¹, Koen Vanderhaegen¹, Mary Immaculate Awori², Zerubabeeli Naturinda², Moses Isabirye²

¹Department of Earth & Environmental Sciences, KU Leuven ² Department of Natural Resources Economics, Busitema University

Mount Elgon region:

- High population pressure
- Unsustainable agricultural practices

Land degradation, erosion, landslides ... Lot of sediment in rivers

Can economic incentives help farmers to conserve the soil?

Information gathering

- Group discussions
- Individual interviews
 - Stakeholders
 - Project participants
- Project documents
- Other research

Analysis

Research objectives

- Identify beneficiaries of water related ES that could and want to pay for this ES
- Assess preferences of land users for
 - different soil conservation measures
 - different types of positive incentives/rewards
- Calculate the willingness to accept of farmers for implementing soil conservation measures
- Conclude on overall PES feasibility

Existing Projects and Potential Buyers

- Two PES projects in the past five years using international funding:
 - Community Ecosystem Conservation Fund
 - Ecosystem Based Adaptation

Funding stopped and projects were terminated in 2016 -> Project dependence: Lack of permanence!

- Future PES project with local, user-based funding:
 - National Water and Sewerage Corporation (NWSC)
 - (Doho Rice Scheme)

50

What is the farmer interested in?

Choice Experiment

Twelve choice cards for

representation

- 1. Width of to be protected river banks?
- 2. What soil conservation measures?
- 3. What agricultural practices?
- 4. Compensation amounts?
- 5. Private vs. Communal compensation?
- 6. Assistance needed?

51

Location of sampling sites

- Farmers with land at the river
- Important water sources
- Degraded rivers

Results: Project Costs

53

Results: Project Costs

54

Policy Implications

- Awareness on benefits of SC is present -> focus on overcoming barriers
- Use individual payments
- Not all farmers require compensations: Efficiency vs. Equity
- Three solutions with increasing cost and increasing ecological benefit
- 1. Equity with 5 m buffers: **only transaction costs**
- Equity with 10 m buffers and individual compensation: UGX 126,170/ yr
- Spatial targetting with 20 m buffers, individual compensation + 20 labour days: UGX 471,790/yr

What is the affordability for the buyer (NWSC) ?

Do Private Sustainability Standards walk the talk in improving economic and environmental sustainability?

Koen Vanderhaegen¹, Kevin Teopista Akoyi², Wouter Dekoninck³, Bruno Verbist¹, Bart Muys¹ and Miet Maertens²

¹Division Forest, Nature and Landscape, Department of Earth & Environmental Sciences, KU Leuven ²Division of Bioeconomics, Department of Earth & Environmental Sciences, KU Leuven ³Entomology Department, Royal Belgian Institute of Natural Sciences

Introduction

- Why? Private Sustainability Standards (PSS)
 - ➔ Information asymmetries

- What?
- Focus on sustainability
 - → Biodiversity conservation
 - →Sustainable livelihoods
- Who Do PSS walk the talk? cares?
 - → Developing countries
 - →Consumers
 - →Companies, non-profit org.
 - →Donors

Study Area

Local Land Use Mosaic

Coffee Garden

Sampling design

- 1. **Survey** among 600 farm-households (Feb-Mar 2014)
 - household- and field-level socio-economic data

2. Field-level inventory in 74 coffee gardens (Jun-Aug 2014)

Stratified random selection out of 1183 fields of surveyed HH + pair-wise matching of controls

field-level data on tree- and invertebrate-biodiversity and C storage

Field and lab work

Carbon Stocks + Tree Diversity

Results PSS => Management

Use of Organic-Fertilizers

Animal manure

Mulching

Green manure

Control UtzRA4C

Results PSS => Welfare Yield **Coffee Labour Productivity**

Results PSS => Ecosystem Services

Entomofauna abundance c 120 45 ⊆ ns *** ns ** *** *** ns 40 100 35 80 30 25 60 20 40 15 10 20 5 0 n **Rove Beetles** Ants Spiders

Key Findings

Utz-RA-4C

performs better from a socio-economic perspective and worse from an ecosystem service perspective

FT-Org

results in a negative income effect (10% price premium is annihilated by a yield loss of 25%), but there are gains in carbon storage and biodiversity.

Coffee standards do not always walk the talk!

Strong trade-offs between socio-economic and ecological benefits.

Conclusions

1. The claims standards make about their impact do not uphold.

E.g. FT focuses most on improving smallholder wellbeing and reducing poverty but is found to actually reduce yields and smallholders' income

- E.g. RA focuses on environment and nature conservation, but is found to create adverse ecological impacts, although yields and farmers' income did increase!
- 2. Multiple certification does not necessarily increase the impact of PSS or eliminate trade-offs.
- 3. Positive is that PSS reduce trade-offs, but room for improvement.

Advice

PSS should be designed to compensate for existing trade-offs

 ⇒By harmonization of PSS instead of combining PPS with varying focus and different requirements
 ⇒By differentiation of PSS to local agro-ecological and economic conditions

Rather than their strategic use as a product differentiation tool.

+ Limited impact could be due to lack of effectiveness or lack of compliance or both...

Kevin Teopista Akoyi

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES KU Leuven - BELGIUM

Results were shared in stakeholder workshops in Mbale & Kampala October 2018

- Still lots of challenges
- Promising activities to rebuild trust between MENP & local population
- Need for upscaling of promising PES initiatives: local & international
- Knowledge & perceptions: still fragmented, but ES are well understood
- Stakeholder forum with UWA as catalyser: work in progress
- "Local Ownership of ES" radius of ca. 5 km: Need for 'honest brokers' for larger distances
- Potential & challenges for "synergies" e.g. tree planting vs. relocation for land slide control

Thanks for your attention! Questions?

The support of BELSPO, Belgian Development cooperation, VLIR-UOS and UNESCO-MAB was very much appreciated!!

lan and he Biosphere Programme

belspo

leigian Science Policy Offic