Diversity and natural production of wild edible fungi from African ectomycorrhiza-dominated forests

De Kesel André, Bill Kasongo, Nourou Yòrou, Degreef Jérôme

A project with interests in

- Taxonomy of tropical African fungi
- Training local scientists & capacity building
- Ecosystem functioning and services
- Conservation
- Tools for valorisation

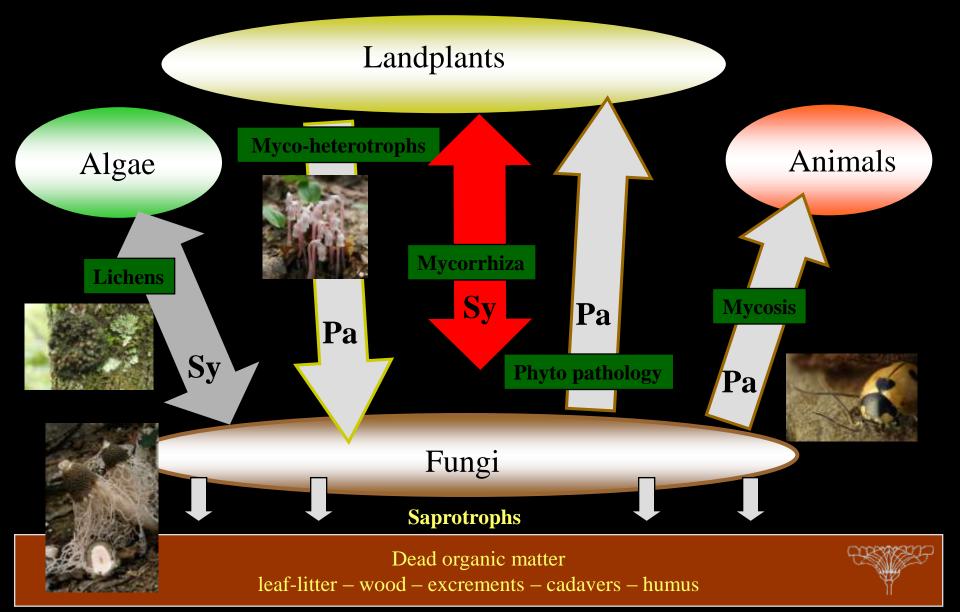
It's about people and Fungi

Introduction

- In tropical Africa about 400 species of wild edible fungi are used for food.
- Across the entire region all edible taxa have a socio-economic significance for local communities.

Introduction

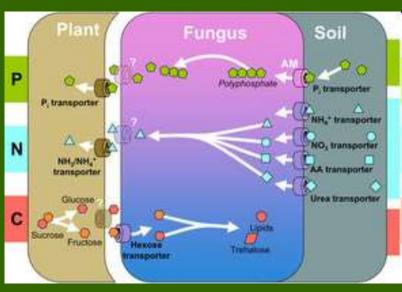
There is a unique and diverse set of wild edible fungi in each phytogeographical zone.


A species inventory in the Zambezian and Sudanian ecozone shows the predominance of ectomycorrhizat taxa.

All are associated with trees

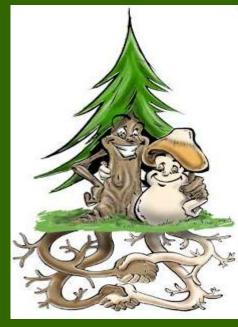
Sudanian region

Zambesian region


Position of ectomycorrhizal taxa

Mutual advantages of EcM associations

For the plant

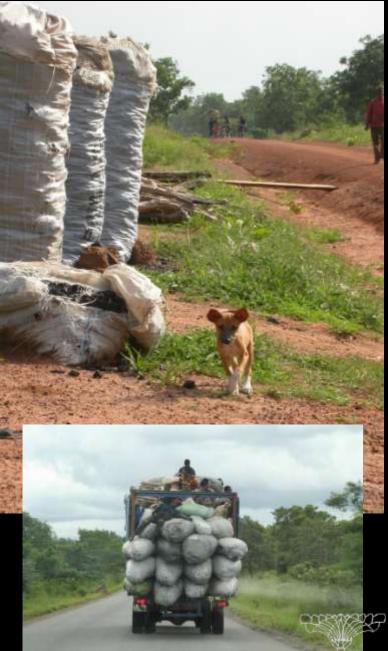

- water uptake
- draught and salt tolerance
- uptake of macro-elements
- uptake of oligo-elementen
- tolerance towards metal polluted soils
- protection against pathogen (nematodes, bacteria, ...)

For the fungus

- carbo hydrates

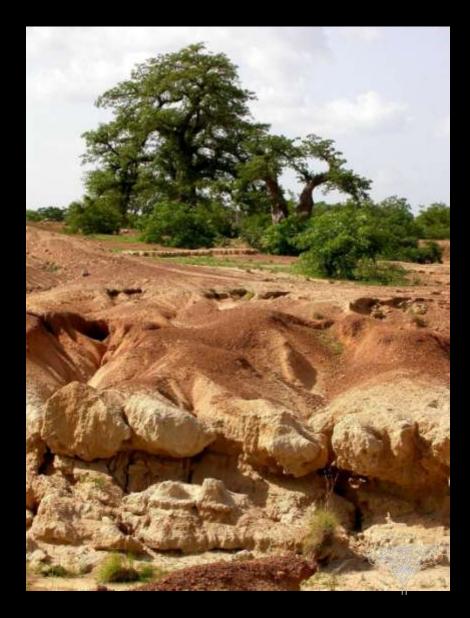
Ectomycorrhizal forest

Ectomycorrhizal fungi



But, there is a problem

Sudanian and Zambezian miombos are under severe threat for the <u>mass-production of charcoal.</u>


This activity is widespread and big business. It is encouraged by an increasing demand from the cities.

.... with a result

After a complete slash and burn, most types of miombo forest regenerate only slowly, or not at all.

Desertification, lateritisation and erosion are strengthened by global change.

Question

.... how to convince and induce change ?

What is the value of edible fungi

.... how to gather this information ?

Yields of wild fungi from different countries (source FAO, Boa 2004)

COUNTRY	DETAILS OF ANNUAL YIELDS	AMOUNT (Kg/Ha)	SOURCE
Russian Federation (central Siberia)	"Most popular (edible) mushrooms"	65–170	
Russian Federation (Arkhangelsk)	(a) <i>Lactarius torminosus</i> , (b) "red- headed mushroom" - ? <i>Russula</i>	(a) 2–14 (b) 9	Chibisov and Demidova, 1998
Finland(north)	All edible mushrooms at Sotkamo (a) 1976 and (b) 1977	(a) 30 (b) 85	Koistinen, 1978
Finland	<i>Gyromitra esculenta</i> (note fluctuations; 1973 and 1974 good; 1975 and 1976 poor; 1977 mediocre)	50–100	Jalkanen and Jalkanen, 1978
Estonia(northwest)	Average for all edible fungi at three sites, from 1978 to 81 *	124, 499,143	Kalamees and Silver, 1988
Estonia(northwest)	Average for (a) <i>Suillus variegatus</i> – one site and (b) <i>Lactarius</i> <i>rufus</i> – three sites *	(a) 41 (b) 20; 24; 405	Vladyshevskiy, Laletin and Vladyshevskiy, 2000
Mexico	All edible species from two sites	85	Lopez, Cruz and Zamora- Martinez, 1992
Mexico(Veracruz)	All edible species, two sites (a) and (b) for 1983 and 1985 resp.	(a) 1759; 234(b) 747; 180	Villarreal and Guzmán, 1985; 1986a
Mexico(Veracruz)	(a) Suillus granulatus; (b) Cantharellus cibarius (c) Amanita caesarea; (d) Boletus edulisFor 1983 and 1985 resp.	(a) 246; 75 (b) 4; 8 (c) nd; 38 (d) 150; 9	Villarreal and Guzmán, 1985; 1986a
United States(Pacific northwest)	(a) Tricholoma magnivelare; (b) Morchella spp.; (c) Cantharellus	(a) 3–15 (b) 1–6 (c) 2– 0	Pilz and Molina, 2002

Objectives (to convince)

- Not estimate, but measure & compare how much edible fungi a selection of woodland ecosystems can deliver
- A qualitative (species) & quantitative (weight) approach
- Demonstrate that this service is renewable and that it is socio-economically more interesting than large-scale charcoal production.

Termitomyces microcarpus, not ectomycorrhizal

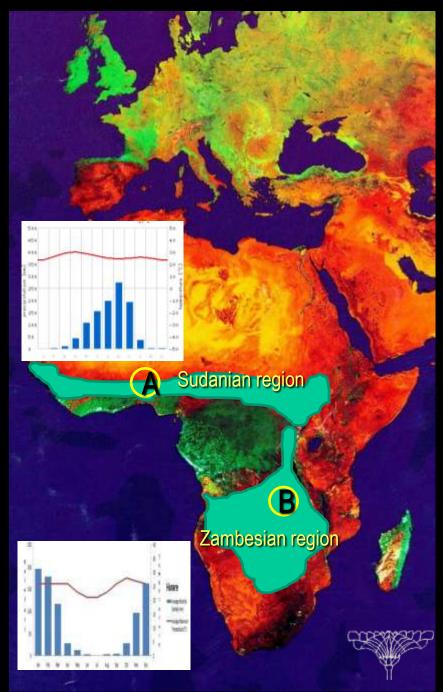
Method: continuous sampling in permanent plots

- plots of 30 x 30m, 3 per forest type

- phytosociological relevé per plot

- weekly sampling, throughout the entire rainy season (1-3 years consecutively).

- fresh weight and number of fruitbodies is recorded per species.



Where ?

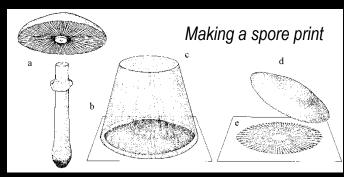
Areas with 3-6 months dry season, followed by a rainy season. Annual rainfall 700-1450mm/m². Miombo forest plots mainly dominated by ectomycorrhizal trees and without termite hills. Well protected from picking, logging and intensive human disturbance not so easy.

Sites: 4 types of miombo forest in Bénin and also 4 in the DR Congo

- A. Sudanian region : Mont kouffé (Benin, West Africa), 4 EcM forest types = 12 plots
- B. Zambezian region : Mikembo sanctuary (Katanga, DR Congo) 4 EcM forest types = 12 plots

Local knowledge was previously collected in both regions and completed with all available data from the litterature

Collecting reference specimens


- Collecting material, tags, collection data
- Photographing (in & ex situ)
- Spore prints

Color chart Pantone and setup for technical photography

Collecting reference specimens (2)

- Description form: 50 features (standard form)
- Drying
- Herbarium storage

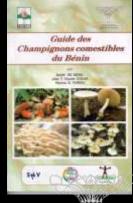
Field dryer

Identification

- Based on morphological and whenever necessary also molecular characteristics (Cantharellus)
- Litterature surveys
- Herbarium consultation and comparison with type material in BR

FUNGES FLORA OF TROPPLAE AFRICA

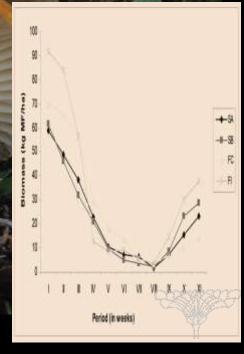
formation of the same er Treasulat Adverse


Managements of Managements Globerghide, Paterneyde and Nettadapase or Tropanal Altra

Taxonomic issues with Cantharellus

Taxonomic issues with Cantharellus

Cantharellus platyphyllus a good taxon, but very variable


Natural production of Lactarius s.l. in the Sudanian woodland plots (Bénin)

Edible taxa	Forest type	SA	SB	FC	
	A MARKED A	(in	kg/ha)		
Lactifluus gymnoca	arpoides Verbeken	5.6 (318)	23.9 (3143)	115.2 (6533)	121.4 (6238)
Lactifluus densifoli	us Verbeken & Karhula	54.4 (1122)	15.7 (307)	1 Aller	1.1 (26)
	biculatus Verbeken & Van R	ooij -	1.2 (26)	34.5 (662)	5.8 (71)
Lactifluus flamman	s Verbeken	11-1720-	25.1 (1088)	5.4 (926)	3.8 (1078)
Lactarius saponace	eus Verbeken	11-1122	8.1 (548)		12.9 (740)
La <mark>ctarius</mark> tenellus	Verbeken & Walleyn	6.7 (3733)	2.3 (1526)	0.6 (710)	0.3 (250)
La <mark>ctarius baliophae</mark>	eus Pegler	7.1 (559)	- 010 1.4	-	III ALL ALL AND
Lactifluus luteopus	Verbeken	1= 70.2	0.9 (93)	1.9 (137)	2.0 (204)

Lactarius flammans

Ta SA En sav bra

> In Bénin, *Lactarius* is the more dominant genus, both in terms of appreciation by local people and yields per ha per year. This foodsource is, by far, unexploited

Results

Total annual production of edible fungi

	Sudanian plots	Zambezian plots
Number of plots	12	12
Total number of forest types	4	4
Caesalpiniaceae dominated	3	2
Phyllantaceae dominated: Uapaca	1	1
Dipterocarpaceae dominated: Marguesia	0	1
Edible fungi (all species)	30	67
Ectomycorrhizal species	26 (86,6%	51 (76,1%)
Amanita	6	6
 Boletes (sensu lato) 	2	5
Cantharellus	1	18
Lactarius (incl. Lactifluus)	8	14
• Russula	7	6

Average

140 kg/ha.y

184,5 kg/ha.y

Socio-economic considerations

Edible fungi

Least productive forest type (fresh weight) Most productive forest type (fresh weight) Average

The average local market price for edible fungi fluctuates between 0,5 and 1,5 \$/kg If 10% reaches the market, a single hectare of miombo delivers (184/10 x 1\$) = 18.4\$/year

Considering the actual market price, 1 hectare of slashed miombo delivers about 400\$ of charcoal. Since miombo forest regenerates in 30 years, charcoal conversion delivers 400/30 = 13.3\$/year

Sudanian plots

Zambezian plots

140 kg/ha.y

184,5 kg/ha.y

Facts and conclusions

- There is a unique diversity of wild edible fungi in the Zambezian and Sudanian centres of endemism.
- All these taxa have a socio-economic significance for local communities
- Fungal ectotrophic taxa dominate among edible fungi. *Lactarius* in the West-African study area, *Cantharellus* and many more in Eastern Africa
- The woodland ecosystem delivers substantial amounts (100-300kg/ha.year) of edible fungi (all taxa) and this function is annihilated by large-scale charcoal production.
- The cash generated from charcoal conversion does not outweigh the income accumulated from mushroom harvesting.
- Maintaining the ecosystems' function is financially and culturally more beneficial for local people than charcoal conversion.

Future research

- A socio-economic study, including all NTFP, for the conservation and sustainable use of miombo forests.

Concluding remarks

- Let there be no doubt that the massive production of charcoal has become the biggest threat to all EcM dominated forests in the whole of tropical Africa.
- Using miombo forests for charcoal production leads to long term loss of biodiversity. For local people it definitely leads to a substantial loss of income from all their forest products.
- Conservation of miombo forests is the better way to a long-term improvement in the livelihood of millions of rural people.
- Although forest products, including edible fungi, are often highly valued by local inhabitants, much effort is still needed to promote awareness.
- Capacity building in learning how to find and build effective tools for conservation and sustainable use is highly needed.

Acknowledgements

Bill Kasongo, Jérôme Degreef and André De Kesel acknowledge the logistic support from Biodiversité au Katanga (BAK, asbl) and Mikembo Sanctuary (asbl).

Authors :

Ir. Kasongo Bill, University of Lubumbashi (DR Congo) Dr. Ir. Yorou, Soulemane Nourou, University of Parakou (Bénin) Dr. Degreef Jérôme, Botanic Garden Meise (Belgium) Dr. De Kesel André, Botanic Garden Meise (Belgium) andre.dekesel@botanicgarden.bei

