

ULF

Rapid ecosystem services assessment tools: a user-based categorization

Jean Hugé, Anne-Julie Rochette, Luc Janssens de Bisthoven, Jean-Didier Akpona, Bruno Verbist, Koen Vanderhaegen, Steven Van Passel

ESP, Togo, June 2019

Why assess ecosystem services?

- Biosphere reserves provide a range of ecosystem services that are key to human well-being.
- If the ecosystem services-concept needs to support the sustainable management of Biosphere reserves, we need a *systematic, robust and credible assessment* of the state and trends of these ecosystem services.
- Such an assessment will allow managers to evaluate threats endangering various ecosystem services, and to develop *actions* to counter negative trends.
- It will also contribute to communicate the added value of Biosphere reserves.

	Category	Definition	Threshold	
	Functionally extinct	Service no longer supplied in the region and is practically unrecoverable	st	
	Dormant	Lost		
	Critically endangered	Current levels of demand exceed supply and the ratio of supply to demand declining or expected to decline	J	
	Endangered	Current levels of demand exceed supply; ratio of supply to demand is stable but supply is declining	Jndersupplied	
U	Stable but undersupplied	Current levels of demand exceed supply; neither supply nor ratio of supply to demand declining	Unde	
	Vulnerable	Ratio of supply to demand is declining or expected to decline such that supply is likely to be insufficient to meet demand within a set time horizon	At risk	
	Least concern	Supply currently meets or exceeds demand, and does not meet the criteria for Vulnerable	Secure	
	Data deficient	Inadequate information is available about either or both of supply and demand to assess the level of threat	n/a	

EVAMAB

Threat categorization framework for ecosystem services (Maron et al., 2017)

How to translate the booming scientific interest for ecosystem services....

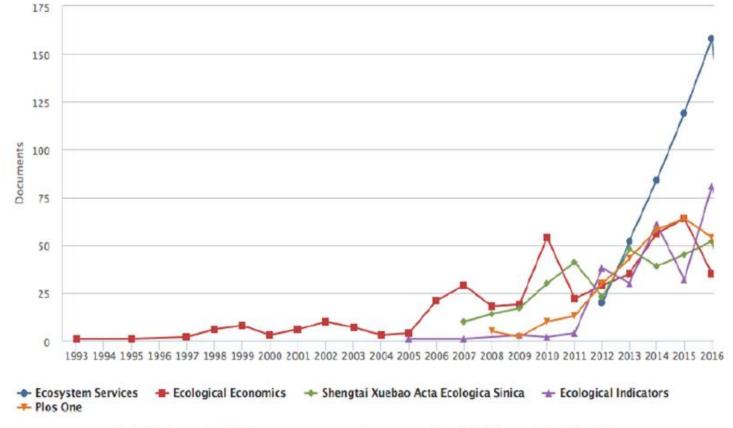
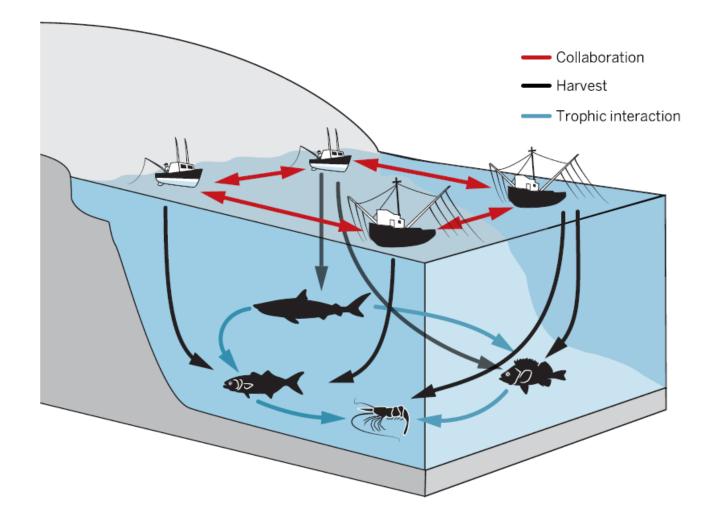



Fig. 4. Top journals publishing papers on ecosystem services (from SCOPUS search, April 3, 2017).

...into sustainable management actions?

There are tools to do this!

- There are many tools and methods to 'translate' ecosystem services data into management-relevant actions and into insights for decision-makers and for the general public.
- These tools often have different objectives :
 - Data collection tools
 - Visualisation tools
 - Models (forecasting tools)
 - Participatory tools
 - Economic valuation tools
- The requirements in terms of time, skills and scope of application range widely.

How to select the right tool(s)?

- Despite the wealth of tools that have been developed, their application is often limited.
- This can be due to unrealistic data requirements, to the lack of specialized skills and/or the lack of financial, human and time resources to apply these tools in the field, and/or to the inappropriate scope (mismatch between the users' needs and what the tool can offer).
- Which tools can be used to assess ecosystem services in Biosphere reserves?
- What are the pros and cons of each tool?

The EVAMAB approach to ES tool assessment

- Step 1: Longlist of tools
- Step 2: Identification of user-generated criteria to assess tools
- **Step 3:** Categorization of tools
- Step 4: Field application of a selection of tools

Step 1: Longlist of tools to be assessed

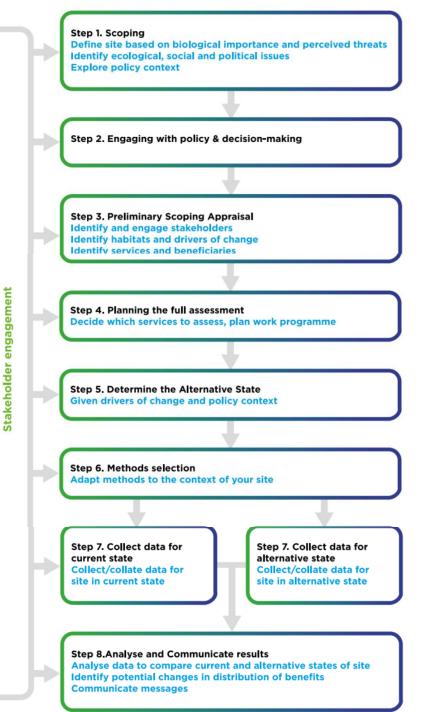
Selection criteria:

- Generalizable
- Applicable at the landscape scale
- Applicable independently (*i.e.* without *a priori* requiring external expertise)
- Affordable (*i.e.* without requiring a priori financial investment)
- Able to assess multiple ecosystem services
- Rapid (*i.e.* requiring less than a year to apply the tool)

Step 1: Longlist of tools to be assessed

\rightarrow 19 tools selected

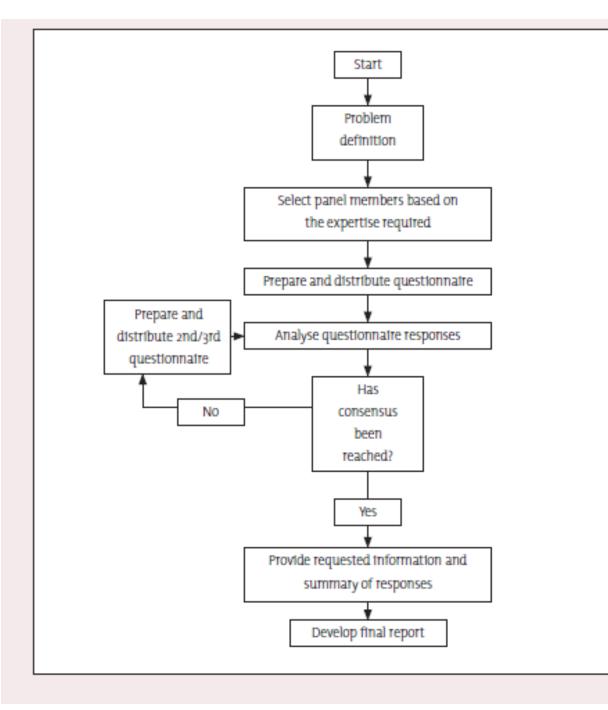
model

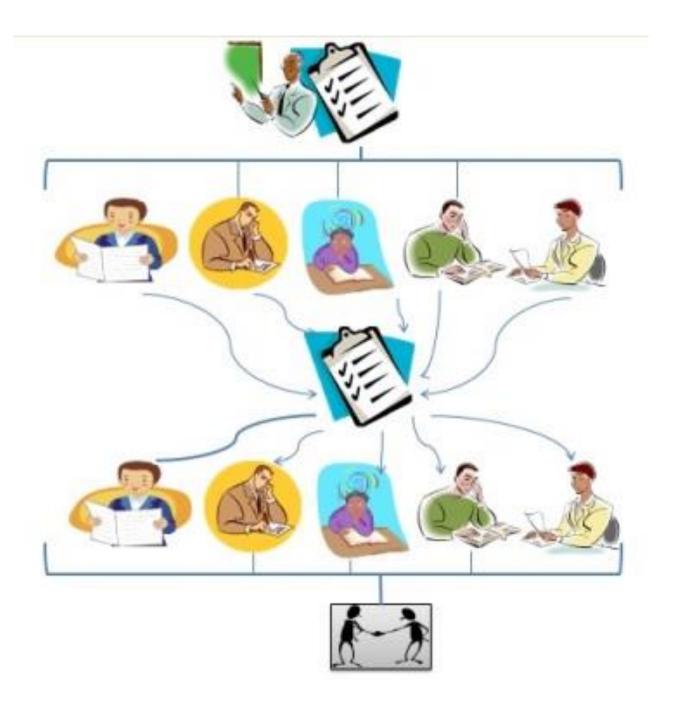

The Protected **Co\$ting Nature Areas Benefits** Assessment Tool wwr GEOMOD A Geographic SITE framework (SImulation of Terrestrial Information **E**nvironments) Systems-based **Ecosystem Services Review** LUC change ARIES - ARtificial Intelligence for **Ecosystem Services Review for Impact Ecosystem Services** WORLD Assessment RESOURCES Soil & Water INSTITUTE Assessment Tool InVEST tessa Interdisciplinary Decision Support Dashboard (IDSD) integrated valuation of ecosystem services and tradeoffs. MARXAN conservation solutions Social Values for Ecosystem Services (SolVES) Green Infrastructure Valuation Toolkit

The Ecosystem Services Partnership Visualization tool

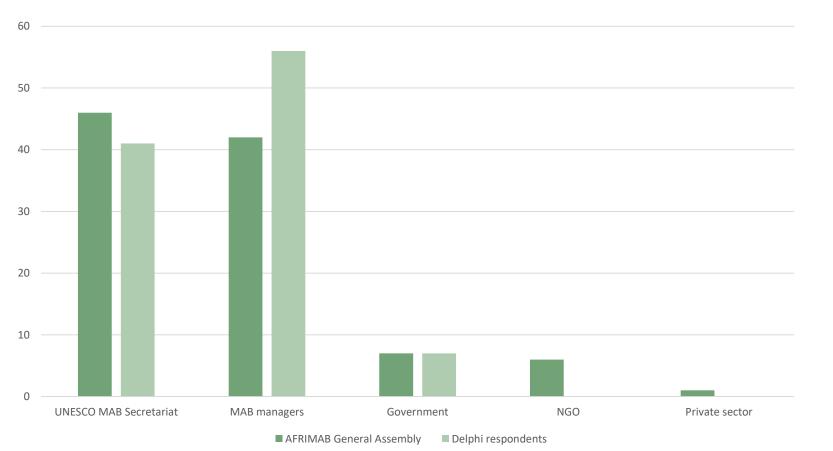
i-Iree

- Purpose: Prioritization, quantification and monetary estimation of ES; Comparing current situation with a most likely state of the site
- Time: days → months
- Inputs: Stakeholder-based input; Available data; Field sampling
- Skills: Stakeholder involvement
- **Outputs:** Quantitative data; Qualitative data; Economic valuation
- ES: Regulating: climate regulation, flood protection, water quality improvement; Provisioning: harvested wild and cultivated goods, water provision; Cultural: nature-based recreation




Step 2: Identification of user-generated criteria to assess the tools

- Synthesis of criteria proposed in the scientific literature
- Validation & identification of additional criteria by way of a Delphi survey among experts present at AfriMAB 2017
- Delphi is an iterative survey which allows participants to air their opinion (round 1), and to possibly modify their initial opinion in round 2, after having been exposed to anonymized responses of their peers.
- Delphi allows to identify criteria for which there is consensus or not.



Delphi: profile of the participants

Profile of Delphi respondents and participants to the 2017 AFRIMAB General Assembly (in %)

What should rapid ecosystem services assessment tools do ? (Results of the two-round Delphi survey among MAB experts & professionals)

Characteristic		Consensus level	Score variance	Trend in scores between rounds
Purpose of the tool	he tool Environmental awareness raising & education		10%	\downarrow
	Scoping & description of provided ES	65%	10%	1
	Supporting ES monitoring & evaluation	65%	25%	1
	Identifying livelihood, development &investment opportunities	55%	25%	\checkmark
Characteristics of the tool	Be able to assess multiple types of ES	60%	10%	\downarrow
	Require a low degree of expertise to be applied	55%	20%	1
	Provide results that are easy to communicate	55%	5%	1
Outputs	Quantitative output	53%	15%	1
	Economic evaluation	58%	5%	1
Inputs	Maps	78%	15%	↓
	Quantitative input	83%	5%	=
	Qualitative input	61%	5%	↓
Hiring someone to apply ES assessments tool	Yes	84%		1
Most restrictive criterion for fieldwork	Technically demanding	56%	20%	\uparrow
	Epensive	67%	10%	1

Only characteristics with scores showing >50% consensus are presented

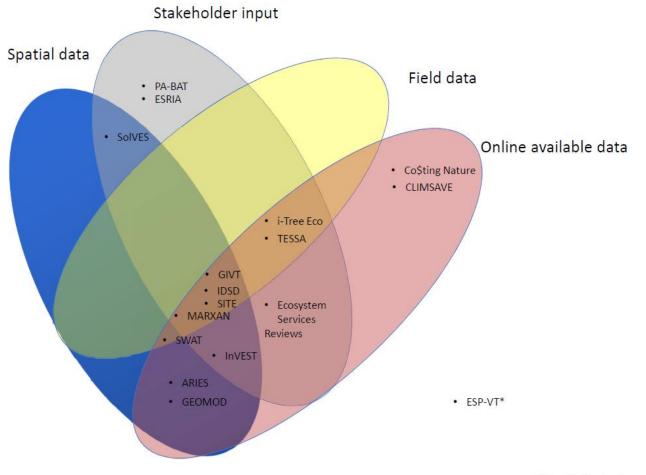
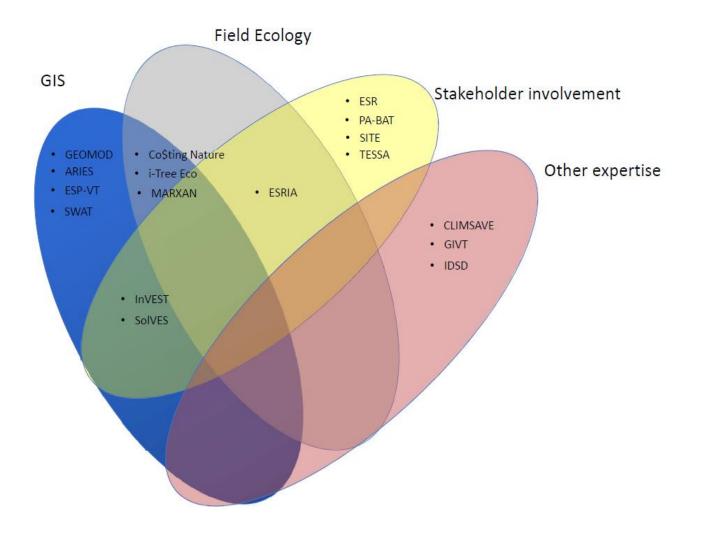
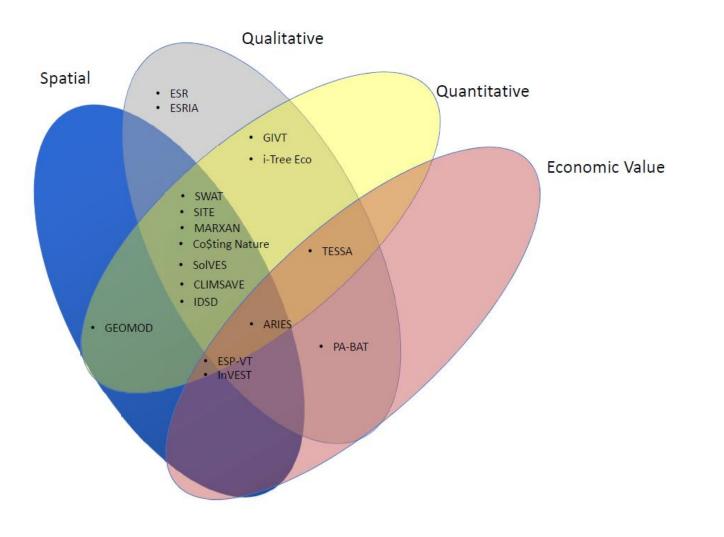

Step 3: Categorization of tools

Table 4: Description of ecosystem services assessment tools. ($^{\textcircled{O}}$ indicates that applying the tool typically takes days-weeks, $^{\textcircled{O}}$ $^{\textcircled{O}}$ weeks-months and $^{\textcircled{O}}$ $^{\textcircled{O}}$ $^{\textcircled{O}}$ months-year).

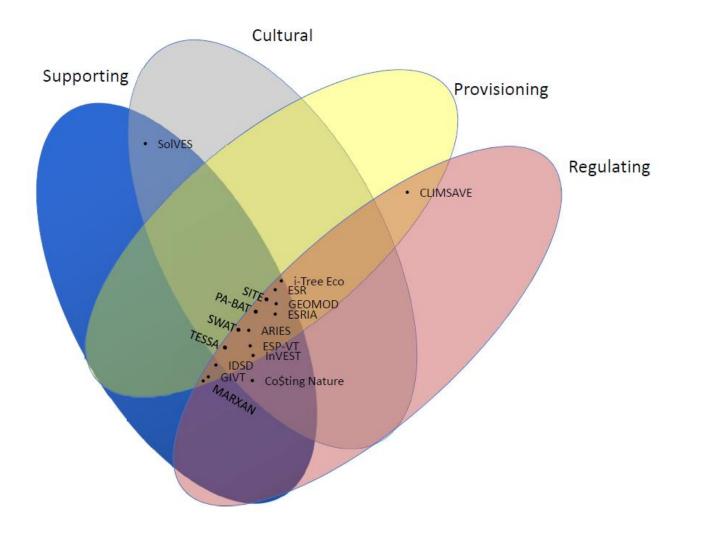
Tool	Input	Skills	Output	Ecosystem services	Purpose	Sources
A Geographic Information Systems-based LUC change model (GEOMOD) ÖÖ	Spatial data; Available data	GIS	Spatial data; Quantitative data;	A-Supporting: biodiversity, water purification, soil formation; B- Regulating: climate and water regulation, erosion control, moderation of extreme events; C-Provisioning: food & fibre, raw materials; D-Cultural: recreation, cultural diversity.	Modelling land use/cover changes between two time periods	Estoque & Murayama, 2012
ARIES Artificial Intelligence for Ecosystem Services Ŏ/ŌŌ	Spatial data; Available data	GIS	Spatial data; Quantitative data; Qualitative data: Economic valuation	A-Supporting: water supply; B-Regulating: carbon sequestration and storage, flood regulation, nutrient regulation, sediment regulation; C-Provisioning: subsistence fisheries; D- Cultural: open space proximity, aesthetic viewsheds, recreation	Modelling and mapping ES flows and distribution of beneficiaries; Comparison between different scenarios (<i>e.g.</i> climate, land use)	Bagstad <i>et al.</i> , 2011; Villa <i>et al.</i> , 2009
CLIMSAVE Integrated Assessment (IA) Platform	Available data		Spatial data; Quantitative data; Qualitative data	A-Supporting: /; B- Regulating: climate regulation, flood regulation, water flow regulation, pollination; C-Provisioning: food, fresh water, raw materials; D-Cultural: /	Impact prediction of climate change and vulnerability; Identifying adaptation strategies and their cost- effectiveness	Harrison <i>et al.</i> 2015



Step 3: Categorization of tools based on required input

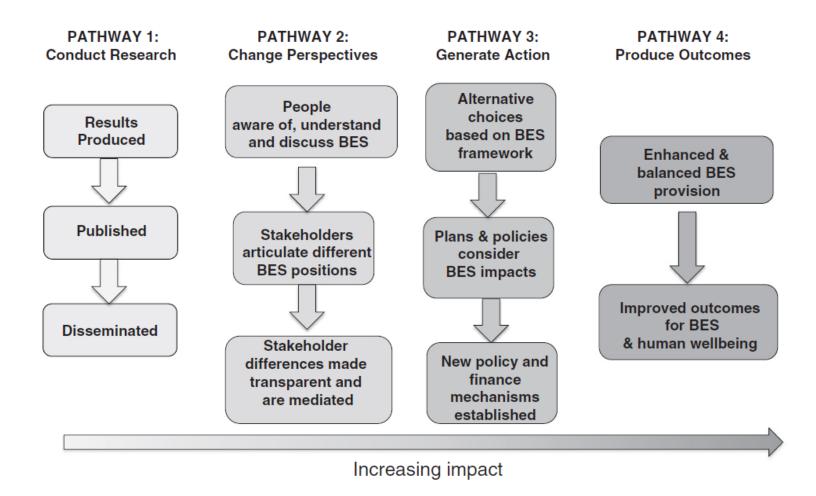


Step 3: Categorization of tools based on required skills



Step 3: Categorization of tools based on generated output

Step 3: Categorization of tools based on the ecosystem services addressed



Step 4: Application of tools in the field

- Case study locations of EVAMAB (Benin, Ethiopia, Tanzania, Uganda) plus additional applications in Senegal, Kenya and the Republic of Congo
- Modification of existing tools (*e.g.* TESSA-inspired Nominal Group Technique)
- Application of complementary methods, such as judgement elicitation methods (*e.g.* Q methodology to map stakeholders' perceptions)

From tools to decision-making

Concluding reflections

- The diversity of available tools is a plus, but can also be overwhelming: which tool should one select?
- The EVAMAB approach allows to motivate tool selection, and is validated by experts-potential users.
- The practical application of tools, and the experimentation with hybrid methods allows to adapt and fine-tune existing methods, as challenges and methods keep evolving.
- How to anchor ecosystem services into decision-making regarding Biopshere reserves?

Contact

Anne-Julie Rochette

CEBioS, Royal Belgian Institute of Natural Sciences (RBINS) <u>ajrochette@naturalsciences.be</u>

Prof. Dr. Jean Hugé

Université Libre de Bruxelles (Systems Ecology & Resource Management) CEBioS, Royal Belgian Institute of Natural Sciences (RBINS) Hasselt University (Centre for Environmental Sciences) Vrije Universiteit Brussel (Biology Department)

Jean.Huge@ulb.ac.be

References

- Bagstad et al. 2013. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosystem Services 5: e27-e39.
- Bodin et al. 2017. Collaborative environmental governance: achieving collective action in social-ecological systems. Science 357 (659)
- Costanza et al. 2017. Twenty years of ecosystem services: how fare have e come and how fare do we still need to go? Ecosystem Services 28: 1-16.
- Guerry et al. 2012. Modeling benefits from nature: Using ecosystem services to inform coastal and marine spatial planning. International Journal of Biodiversity Science, Ecosystem Services & Management 8:107-121
- Hugé et al. 2018. Critical evaluation of rapid ecosystem services assessment tools in African Man & Biosphere reserves. Poster presented at the IUCN-conference 'Communities, Conservation & Livelihoods'. Halifx, Canada, June 2018.
- Hugé, Rochette et al. In review. Ecosystem services assessment tools for African Biosphere Reserves: a user-based categorization. Ecosystem Services in review.
- IUCN 2018. Tools for measuring, modeling and valuing ecosystem services. IUCN. Gland, Switzerland.
- Maron et al. 2017. Towards a threat assessment framework for ecosystem services. Trends in Ecology & Evolution 32: 240-248.
- Mukherjee et al. 2018. Comparison of techniques for eliciting views & judgements in decision-making. Methods in Ecology & Evolution
- Ruckelshaus et al. 2015. Notes from the field: lessons learned from using ecosystem services approaches to inform real-world decisions. Ecological Economics 115: 11-21.

